hf_text-generation-inference/server/text_generation/models/causal_lm.py

405 lines
15 KiB
Python
Raw Normal View History

import torch
from dataclasses import dataclass
from transformers import AutoTokenizer, AutoModelForCausalLM
2022-11-07 04:53:56 -07:00
from typing import Optional, Tuple, List, Type
from text_generation.models import Model
from text_generation.models.types import GeneratedText
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria
@dataclass
class CausalLMBatch:
batch_id: int
requests: List[generate_pb2.Request]
2022-11-07 04:53:56 -07:00
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
past_key_values: Optional[List[Tuple]]
# All tokens
all_input_ids: List[torch.Tensor]
2022-11-07 04:53:56 -07:00
# Lengths of all generations present in the batch
input_lengths: List[int]
# Generation helpers
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
2022-11-07 04:53:56 -07:00
# Metadata used for padding
size: int
max_sequence_length: int
def to_pb(self):
return generate_pb2.Batch(
id=self.batch_id,
requests=self.requests,
size=self.size,
)
@classmethod
def from_pb(
cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
) -> "CausalLMBatch":
inputs = []
next_token_choosers = []
stopping_criterias = []
2022-11-07 04:53:56 -07:00
input_lengths = []
# Parse batch
for r in pb.requests:
inputs.append(r.inputs)
2022-11-07 04:53:56 -07:00
input_lengths.append(r.input_length)
next_token_choosers.append(
NextTokenChooser(
temperature=r.parameters.temperature,
top_k=r.parameters.top_k,
top_p=r.parameters.top_p,
do_sample=r.parameters.do_sample,
)
)
stopping_criterias.append(
StoppingCriteria(
eos_token_id=tokenizer.eos_token_id, max_new_tokens=r.max_new_tokens
)
)
2022-11-07 04:53:56 -07:00
tokenized_inputs = tokenizer(
inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
).to(device)
2022-11-07 04:53:56 -07:00
all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
return cls(
batch_id=pb.id,
requests=pb.requests,
2022-11-07 04:53:56 -07:00
input_ids=tokenized_inputs["input_ids"],
attention_mask=tokenized_inputs["attention_mask"],
past_key_values=None,
all_input_ids=all_input_ids,
2022-11-07 04:53:56 -07:00
input_lengths=input_lengths,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=pb.size,
2022-11-07 04:53:56 -07:00
max_sequence_length=max(input_lengths),
)
@classmethod
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
# Used for padding
total_batch_size = sum(batch.size for batch in batches)
max_sequence_length = max(batch.max_sequence_length for batch in batches)
# Batch attributes
requests = []
2022-11-07 04:53:56 -07:00
input_lengths = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
2022-11-07 04:53:56 -07:00
# Batch tensors
input_ids = None
attention_mask = None
past_key_values = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
2022-11-07 04:53:56 -07:00
input_lengths.extend(batch.input_lengths)
all_input_ids.extend(batch.all_input_ids)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
# Slicing end index for this batch
end_index = start_index + batch.size
# We only concatenate batches that did at least one step
2022-11-07 04:53:56 -07:00
if batch.input_ids.shape[1] > 1:
raise ValueError("Batch input_ids should be of shape (batch_size, 1)")
2022-11-07 04:53:56 -07:00
# Create empty tensor
# input_ids is always of shape [batch_size, 1]
# We do not need to pad it
if input_ids is None:
input_ids = torch.empty(
(total_batch_size, 1),
2022-11-07 04:53:56 -07:00
dtype=batch.input_ids.dtype,
device=batch.input_ids.device,
)
2022-11-07 04:53:56 -07:00
# Copy to correct indices
input_ids[start_index:end_index] = batch.input_ids
# Create padded tensor
if attention_mask is None:
attention_mask = torch.zeros(
(total_batch_size, max_sequence_length),
2022-11-07 04:53:56 -07:00
dtype=batch.attention_mask.dtype,
device=batch.attention_mask.device,
)
# We need to slice the attention mask to remove padding from previous steps
2022-11-07 04:53:56 -07:00
attention_mask[
start_index:end_index, -batch.max_sequence_length :
2022-11-07 04:53:56 -07:00
] = batch.attention_mask[:, -batch.max_sequence_length :]
2022-11-07 04:53:56 -07:00
for j, past in enumerate(batch.past_key_values):
past_keys, past_values = past
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
past_keys = past_keys.view(batch.size, -1, *past_keys.shape[-2:])
past_values = past_values.view(batch.size, -1, *past_values.shape[-2:])
_, num_heads, head_dim, padded_sequence_length = past_keys.shape
padded_past_keys_shape = (
total_batch_size,
num_heads,
head_dim,
max_sequence_length - 1,
)
# head_dim is last for BLOOM
if past_values.shape[-1] == head_dim:
past_values_head_dim_last = True
padded_past_values_shape = (
total_batch_size,
num_heads,
max_sequence_length - 1,
head_dim,
)
elif past_values.shape[-2] == head_dim:
past_values_head_dim_last = False
padded_past_values_shape = padded_past_keys_shape
else:
raise ValueError(
f"past_values shape {past_values.shape} is not valid"
)
# This will run only once per layer
2022-11-07 04:53:56 -07:00
if j == len(past_key_values):
padded_past_keys = torch.zeros(
padded_past_keys_shape,
dtype=past_keys.dtype,
device=past_keys.device,
)
padded_past_values = torch.zeros(
padded_past_values_shape,
dtype=past_values.dtype,
device=past_values.device,
)
past_key_values.append((padded_past_keys, padded_past_values))
# We slice the past keys and values to remove the padding from previous batches
past_key_values[j][0][
start_index:end_index, :, :, -(batch.max_sequence_length - 1) :
] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]
if past_values_head_dim_last:
past_key_values[j][1][
start_index:end_index,
:,
-(batch.max_sequence_length - 1) :,
:,
] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
else:
past_key_values[j][1][
start_index:end_index,
:,
:,
-(batch.max_sequence_length - 1) :,
] = past_values[:, :, :, -(batch.max_sequence_length - 1) :]
start_index += batch.size
return cls(
batch_id=batches[0].batch_id,
requests=requests,
input_ids=input_ids,
2022-11-07 04:53:56 -07:00
attention_mask=attention_mask,
past_key_values=past_key_values,
all_input_ids=all_input_ids,
2022-11-07 04:53:56 -07:00
input_lengths=input_lengths,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=total_batch_size,
max_sequence_length=max_sequence_length,
)
class CausalLM(Model):
2022-11-07 04:53:56 -07:00
def __init__(self, model_name: str, quantize=False):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
else:
device = torch.device("cpu")
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
2022-11-07 04:53:56 -07:00
load_in_8bit=quantize,
).eval()
super(CausalLM, self).__init__(
tokenizer=tokenizer,
num_heads=self.model.config.num_attention_heads,
device=device,
)
@property
def batch_type(self) -> Type[CausalLMBatch]:
return CausalLMBatch
def forward(
self, input_ids, attention_mask, past_key_values: Optional = None
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
return outputs.logits, outputs.past_key_values
def generate_token(
self, batch: CausalLMBatch
) -> Tuple[List[GeneratedText], Optional[CausalLMBatch]]:
# For some reason, inference_mode does not work well with GLOO which we use on CPU
context_manager = (
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
)
with context_manager():
2022-11-07 04:53:56 -07:00
logits, past = self.forward(
batch.input_ids, batch.attention_mask, batch.past_key_values
)
# List of indices to cache
next_batch_keep_indices = []
2022-11-07 04:53:56 -07:00
# New values for next forward
next_batch_input_lengths = []
next_batch_input_ids = []
next_batch_all_input_ids = []
2022-11-07 04:53:56 -07:00
# Metadata
next_batch_size = 0
next_batch_max_sequence_length = 0
# Finished requests
generated_texts: List[GeneratedText] = []
# Zipped iterator
iterator = zip(
batch.requests,
2022-11-07 04:53:56 -07:00
batch.input_lengths,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
logits,
next_token_chooser,
stopping_criteria,
all_tokens,
) in enumerate(iterator):
# Select next token
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
# Append next token to all tokens
all_tokens = torch.cat([all_tokens, next_token])
# Evaluate stopping criteria
if stopping_criteria(all_tokens):
# Decode all tokens
output = self.tokenizer.decode(
all_tokens.squeeze(-1), skip_special_tokens=True
)
# Add to the list of finished generations with the original request
generated_texts.append(
GeneratedText(request, output, stopping_criteria.current_tokens)
)
# add to the next batch
else:
next_batch_keep_indices.append(i)
next_batch_input_ids.append(next_token)
next_batch_all_input_ids.append(all_tokens)
next_batch_size += 1
new_input_length = input_length + 1
2022-11-07 04:53:56 -07:00
next_batch_input_lengths.append(new_input_length)
next_batch_max_sequence_length = max(
next_batch_max_sequence_length, new_input_length
)
# We finished all generations in the batch; there is no next batch
if not next_batch_keep_indices:
return generated_texts, None
2022-11-07 04:53:56 -07:00
next_batch_input_ids = torch.cat(next_batch_input_ids, dim=0)
# If we finished at least one generation, we need to evict the indices of the generations that finished
# from the values of the next batch
if generated_texts:
# Apply indices to attention mask, past key values and other items that need to be cached
2022-11-07 04:53:56 -07:00
next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
# Force past to be of dim [batch_size, num_heads, ...] for easy indexing
2022-11-07 04:53:56 -07:00
next_batch_past_key_values = [
[
t.view(-1, self.num_heads, *t.shape[-2:])[next_batch_keep_indices]
for t in layer
]
for layer in past
]
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
next_batch_next_token_choosers = [
batch.next_token_choosers[i] for i in next_batch_keep_indices
]
next_batch_stopping_criterias = [
batch.stopping_criterias[i] for i in next_batch_keep_indices
]
else:
2022-11-07 04:53:56 -07:00
next_batch_attention_mask = batch.attention_mask
next_batch_past_key_values = past
next_batch_requests = batch.requests
next_batch_next_token_choosers = batch.next_token_choosers
next_batch_stopping_criterias = batch.stopping_criterias
# Update attention_mask with padding as we added a new token to input_ids
2022-11-07 04:53:56 -07:00
next_batch_attention_mask = torch.cat(
[
2022-11-07 04:53:56 -07:00
next_batch_attention_mask,
torch.ones((next_batch_size, 1)).to(self.device),
],
dim=1,
)
next_batch = CausalLMBatch(
batch_id=batch.batch_id,
requests=next_batch_requests,
input_ids=next_batch_input_ids,
2022-11-07 04:53:56 -07:00
attention_mask=next_batch_attention_mask,
past_key_values=next_batch_past_key_values,
all_input_ids=next_batch_all_input_ids,
2022-11-07 04:53:56 -07:00
input_lengths=next_batch_input_lengths,
next_token_choosers=next_batch_next_token_choosers,
stopping_criterias=next_batch_stopping_criterias,
size=next_batch_size,
max_sequence_length=next_batch_max_sequence_length,
)
return generated_texts, next_batch