2023-02-03 04:43:37 -07:00
< div align = "center" >
2024-02-16 03:58:58 -07:00
2023-11-07 02:13:09 -07:00
< a href = "https://www.youtube.com/watch?v=jlMAX2Oaht0" >
2023-11-07 02:24:53 -07:00
< img width = 560 width = 315 alt = "Making TGI deployment optimal" src = "https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png" >
2023-11-07 02:13:09 -07:00
< / a >
2023-07-13 13:45:20 -06:00
2022-11-02 10:29:56 -06:00
# Text Generation Inference
2022-10-08 04:30:12 -06:00
2023-02-03 04:43:37 -07:00
< a href = "https://github.com/huggingface/text-generation-inference" >
< img alt = "GitHub Repo stars" src = "https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social" >
< / a >
< a href = "https://huggingface.github.io/text-generation-inference" >
< img alt = "Swagger API documentation" src = "https://img.shields.io/badge/API-Swagger-informational" >
< / a >
2022-10-18 07:19:03 -06:00
2024-08-09 07:01:34 -06:00
A Rust, Python and gRPC server for text generation inference. Used in production at [Hugging Face ](https://huggingface.co )
2023-07-28 09:43:46 -06:00
to power Hugging Chat, the Inference API and Inference Endpoint.
< / div >
2023-02-03 04:43:37 -07:00
## Table of contents
2024-07-09 03:22:08 -06:00
- [Get Started ](#get-started )
- [Docker ](#docker )
- [API documentation ](#api-documentation )
- [Using a private or gated model ](#using-a-private-or-gated-model )
- [A note on Shared Memory (shm) ](#a-note-on-shared-memory-shm )
- [Distributed Tracing ](#distributed-tracing )
- [Architecture ](#architecture )
- [Local install ](#local-install )
2024-11-21 09:53:27 -07:00
- [Local install (Nix) ](#local-install-nix )
2024-07-09 03:22:08 -06:00
- [Optimized architectures ](#optimized-architectures )
- [Run locally ](#run-locally )
- [Run ](#run )
- [Quantization ](#quantization )
- [Develop ](#develop )
- [Testing ](#testing )
2023-04-27 11:16:35 -06:00
2023-10-09 03:59:06 -06:00
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more ](https://huggingface.co/docs/text-generation-inference/supported_models ). TGI implements many features, such as:
2022-10-11 08:50:54 -06:00
2023-10-09 03:59:06 -06:00
- Simple launcher to serve most popular LLMs
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
2023-03-03 10:42:20 -07:00
- Tensor Parallelism for faster inference on multiple GPUs
2023-02-08 14:30:11 -07:00
- Token streaming using Server-Sent Events (SSE)
2023-10-09 03:59:06 -06:00
- Continuous batching of incoming requests for increased total throughput
2024-08-09 07:01:34 -06:00
- [Messages API ](https://huggingface.co/docs/text-generation-inference/en/messages_api ) compatible with Open AI Chat Completion API
2023-10-09 03:59:06 -06:00
- Optimized transformers code for inference using [Flash Attention ](https://github.com/HazyResearch/flash-attention ) and [Paged Attention ](https://github.com/vllm-project/vllm ) on the most popular architectures
2024-02-01 02:23:37 -07:00
- Quantization with :
- [bitsandbytes ](https://github.com/TimDettmers/bitsandbytes )
- [GPT-Q ](https://arxiv.org/abs/2210.17323 )
- [EETQ ](https://github.com/NetEase-FuXi/EETQ )
- [AWQ ](https://github.com/casper-hansen/AutoAWQ )
2024-08-08 14:06:57 -06:00
- [Marlin ](https://github.com/IST-DASLab/marlin )
2024-08-09 07:01:34 -06:00
- [fp8 ](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/ )
2022-10-27 06:25:29 -06:00
- [Safetensors ](https://github.com/huggingface/safetensors ) weight loading
2023-03-03 10:42:20 -07:00
- Watermarking with [A Watermark for Large Language Models ](https://arxiv.org/abs/2301.10226 )
2023-04-04 05:27:46 -06:00
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor ](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor ))
2022-12-12 10:25:22 -07:00
- Stop sequences
2022-12-15 09:03:56 -07:00
- Log probabilities
2024-02-28 03:30:37 -07:00
- [Speculation ](https://huggingface.co/docs/text-generation-inference/conceptual/speculation ) ~2x latency
- [Guidance/JSON ](https://huggingface.co/docs/text-generation-inference/conceptual/guidance ). Specify output format to speed up inference and make sure the output is valid according to some specs..
2023-10-09 03:59:06 -06:00
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
2022-11-04 11:03:04 -06:00
2024-02-01 02:23:37 -07:00
### Hardware support
- [Nvidia ](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference )
- [AMD ](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference ) (-rocm)
- [Inferentia ](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference )
- [Intel GPU ](https://github.com/huggingface/text-generation-inference/pull/1475 )
- [Gaudi ](https://github.com/huggingface/tgi-gaudi )
2024-04-30 03:39:52 -06:00
- [Google TPU ](https://huggingface.co/docs/optimum-tpu/howto/serving )
2024-02-01 02:23:37 -07:00
2022-11-04 11:03:04 -06:00
2023-10-09 03:59:06 -06:00
## Get Started
2023-02-03 04:43:37 -07:00
### Docker
2022-10-11 08:50:54 -06:00
2023-10-09 03:59:06 -06:00
For a detailed starting guide, please see the [Quick Tour ](https://huggingface.co/docs/text-generation-inference/quicktour ). The easiest way of getting started is using the official Docker container:
2023-02-03 04:43:37 -07:00
```shell
2023-11-21 02:39:18 -07:00
model=HuggingFaceH4/zephyr-7b-beta
2024-06-27 04:34:43 -06:00
# share a volume with the Docker container to avoid downloading weights every run
volume=$PWD/data
2023-02-03 04:43:37 -07:00
2024-06-27 04:34:43 -06:00
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
2024-12-09 12:42:42 -07:00
3.0.0 ghcr.io/huggingface/text-generation-inference:3.0.0 --model-id $model
2023-02-03 04:43:37 -07:00
```
2023-04-29 03:53:42 -06:00
2023-10-09 03:59:06 -06:00
And then you can make requests like
2022-10-08 04:30:12 -06:00
2023-10-09 03:59:06 -06:00
```bash
2024-04-05 08:44:10 -06:00
curl 127.0.0.1:8080/generate_stream \
2023-02-03 04:43:37 -07:00
-X POST \
2023-07-25 11:45:25 -06:00
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
2023-02-03 04:43:37 -07:00
-H 'Content-Type: application/json'
```
2022-10-08 04:30:12 -06:00
2024-08-09 07:01:34 -06:00
You can also use [TGI's Messages API ](https://huggingface.co/docs/text-generation-inference/en/messages_api ) to obtain Open AI Chat Completion API compatible responses.
```bash
2024-10-23 05:26:01 -06:00
curl localhost:8080/v1/chat/completions \
2024-08-09 07:01:34 -06:00
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
2024-01-09 06:28:55 -07:00
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit ](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html ). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels` , please note CPU is not the intended platform for this project, so performance might be subpar.
2023-11-27 06:08:12 -07:00
2024-12-12 05:49:33 -07:00
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation ](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus ). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.0-rocm --model-id $model` instead of the command above.
2023-03-03 10:42:20 -07:00
2023-10-09 03:59:06 -06:00
To see all options to serve your models (in the [code ](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs ) or in the cli):
2023-03-03 10:42:20 -07:00
```
2023-10-09 03:59:06 -06:00
text-generation-launcher --help
2023-03-07 10:52:22 -07:00
```
2023-03-03 10:42:20 -07:00
2023-02-03 04:43:37 -07:00
### API documentation
2022-10-08 04:30:12 -06:00
2023-02-03 04:43:37 -07:00
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference ](https://huggingface.github.io/text-generation-inference ).
2023-07-25 11:45:25 -06:00
### Using a private or gated model
2023-07-19 05:38:52 -06:00
2024-06-25 01:23:12 -06:00
You have the option to utilize the `HF_TOKEN` environment variable for configuring the token employed by
2023-07-25 11:45:25 -06:00
`text-generation-inference` . This allows you to gain access to protected resources.
2023-07-19 05:38:52 -06:00
2023-07-25 11:45:25 -06:00
For example, if you want to serve the gated Llama V2 model variants:
2023-02-13 05:02:45 -07:00
2023-07-25 11:45:25 -06:00
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
2024-06-25 01:23:12 -06:00
3. Export `HF_TOKEN=<your cli READ token>`
2023-07-25 11:45:25 -06:00
or with Docker:
2023-07-28 01:14:03 -06:00
```shell
2024-08-09 07:01:34 -06:00
model=meta-llama/Meta-Llama-3.1-8B-Instruct
2023-07-25 11:45:25 -06:00
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=< your cli READ token >
2024-12-09 12:42:42 -07:00
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.0 --model-id $model
2023-07-25 11:45:25 -06:00
```
2023-02-13 05:02:45 -07:00
2023-02-08 09:53:33 -07:00
### A note on Shared Memory (shm)
2023-04-27 11:16:35 -06:00
[`NCCL` ](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html ) is a communication framework used by
2023-02-08 09:53:33 -07:00
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.
In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.
To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.
If you are running `text-generation-inference` inside `Kubernetes` . You can also add Shared Memory to the container by
creating a volume with:
```yaml
- name: shm
emptyDir:
medium: Memory
sizeLimit: 1Gi
```
and mounting it to `/dev/shm` .
2023-04-27 11:16:35 -06:00
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
2023-02-08 09:53:33 -07:00
this will impact performance.
2023-07-25 11:45:25 -06:00
### Distributed Tracing
`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
2024-06-25 09:53:36 -06:00
by setting the address to an OTLP collector with the `--otlp-endpoint` argument. The default service name can be
2024-06-25 01:33:01 -06:00
overridden with the `--otlp-service-name` argument
2023-07-25 11:45:25 -06:00
2023-11-06 17:01:40 -07:00
### Architecture
2023-12-04 06:09:51 -07:00
![TGI architecture ](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png )
2023-11-06 17:01:40 -07:00
2024-09-06 09:00:54 -06:00
Detailed blogpost by Adyen on TGI inner workings: [LLM inference at scale with TGI (Martin Iglesias Goyanes - Adyen, 2024) ](https://www.adyen.com/knowledge-hub/llm-inference-at-scale-with-tgi )
2024-09-05 08:11:52 -06:00
2023-02-03 04:43:37 -07:00
### Local install
2023-04-27 11:16:35 -06:00
You can also opt to install `text-generation-inference` locally.
2023-02-03 05:07:55 -07:00
2024-12-11 11:45:49 -07:00
First clone the repository and change directoy into it:
```shell
git clone https://github.com/huggingface/text-generation-inference
cd text-generation-inference
```
Then [install Rust ](https://rustup.rs/ ) and create a Python virtual environment with at least
Python 3.9, e.g. using `conda` or `python venv` :
2023-02-03 05:07:55 -07:00
```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
2024-12-11 11:45:49 -07:00
#using conda
2024-02-01 02:23:37 -07:00
conda create -n text-generation-inference python=3.11
2023-02-03 05:07:55 -07:00
conda activate text-generation-inference
2024-12-11 11:45:49 -07:00
#using pyton venv
python3 -m venv .venv
source .venv/bin/activate
2023-02-03 05:07:55 -07:00
```
2023-02-13 05:02:45 -07:00
You may also need to install Protoc.
On Linux:
```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```
2023-04-27 11:16:35 -06:00
On MacOS, using Homebrew:
2023-02-13 05:02:45 -07:00
```shell
brew install protobuf
```
2023-02-03 05:07:55 -07:00
Then run:
2022-10-27 06:25:29 -06:00
2022-10-08 04:30:12 -06:00
```shell
2023-02-03 04:43:37 -07:00
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
2024-02-01 02:23:37 -07:00
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
2022-10-08 04:30:12 -06:00
```
2023-02-08 09:53:33 -07:00
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
2023-02-03 05:07:55 -07:00
```shell
2023-02-08 09:53:33 -07:00
sudo apt-get install libssl-dev gcc -y
2023-02-03 05:07:55 -07:00
```
2024-11-21 09:53:27 -07:00
### Local install (Nix)
Another option is to install `text-generation-inference` locally using [Nix ](https://nixos.org ). Currently,
we only support Nix on x86_64 Linux with CUDA GPUs. When using Nix, all dependencies can
be pulled from a binary cache, removing the need to build them locally.
First follow the instructions to [install Cachix and enable the TGI cache ](https://app.cachix.org/cache/text-generation-inference ).
Setting up the cache is important, otherwise Nix will build many of the dependencies
locally, which can take hours.
After that you can run TGI with `nix run` :
```shell
nix run . -- --model-id meta-llama/Llama-3.1-8B-Instruct
```
**Note:** when you are using Nix on a non-NixOS system, you have to [make some symlinks ](https://danieldk.eu/Nix-CUDA-on-non-NixOS-systems#make-runopengl-driverlib-and-symlink-the-driver-library )
to make the CUDA driver libraries visible to Nix packages.
For TGI development, you can use the `impure` dev shell:
```shell
nix develop .#impure
# Only needed the first time the devshell is started or after updating the protobuf.
(
cd server
mkdir text_generation_server/pb || true
python -m grpc_tools.protoc -I../proto/v3 --python_out=text_generation_server/pb \
--grpc_python_out=text_generation_server/pb --mypy_out=text_generation_server/pb ../proto/v3/generate.proto
find text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \;
touch text_generation_server/pb/__init__.py
)
```
All development dependencies (cargo, Python, Torch), etc. are available in this
dev shell.
2023-10-09 03:59:06 -06:00
## Optimized architectures
2024-01-26 02:13:23 -07:00
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list ](https://huggingface.co/docs/text-generation-inference/supported_models ).
2023-10-09 03:59:06 -06:00
Other architectures are supported on a best-effort basis using:
`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
or
`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`
2024-02-01 02:23:37 -07:00
## Run locally
2022-10-27 06:25:29 -06:00
2023-02-03 04:43:37 -07:00
### Run
2022-10-27 06:25:29 -06:00
```shell
2024-02-01 02:23:37 -07:00
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
2022-10-27 06:25:29 -06:00
```
2023-02-03 04:43:37 -07:00
### Quantization
2024-08-09 07:01:34 -06:00
You can also run pre-quantized weights (AWQ, GPTQ, Marlin) or on-the-fly quantize weights with bitsandbytes, EETQ, fp8, to reduce the VRAM requirement:
2022-10-27 06:25:29 -06:00
```shell
2024-02-16 03:58:58 -07:00
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize
2022-10-27 06:25:29 -06:00
```
2023-08-03 15:00:59 -06:00
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes ](https://arxiv.org/pdf/2305.14314.pdf ). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher` .
2024-08-09 07:01:34 -06:00
Read more about quantization in the [Quantization documentation ](https://huggingface.co/docs/text-generation-inference/en/conceptual/quantization ).
2023-02-03 04:43:37 -07:00
## Develop
2022-10-18 07:19:03 -06:00
2022-10-08 04:30:12 -06:00
```shell
2023-02-03 04:43:37 -07:00
make server-dev
make router-dev
2022-10-08 04:30:12 -06:00
```
2023-02-03 04:43:37 -07:00
## Testing
2022-10-22 12:00:15 -06:00
```shell
2023-04-27 11:16:35 -06:00
# python
make python-server-tests
make python-client-tests
# or both server and client tests
2023-02-03 04:43:37 -07:00
make python-tests
2023-04-27 11:16:35 -06:00
# rust cargo tests
2023-05-15 15:36:30 -06:00
make rust-tests
# integration tests
2023-02-03 04:43:37 -07:00
make integration-tests
2023-02-03 05:07:55 -07:00
```