hf_text-generation-inference/server/text_generation_server/server.py

262 lines
8.7 KiB
Python
Raw Normal View History

2022-10-08 04:30:12 -06:00
import asyncio
2022-10-17 06:59:00 -06:00
import os
import torch
import time
Better graceful shutdown. (#1827) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-29 09:23:40 -06:00
import signal
2022-10-17 06:59:00 -06:00
2022-10-08 04:30:12 -06:00
from grpc import aio
from loguru import logger
2022-10-08 04:30:12 -06:00
from grpc_reflection.v1alpha import reflection
from pathlib import Path
2023-01-31 10:53:56 -07:00
from typing import List, Optional
2022-10-08 04:30:12 -06:00
2023-03-07 10:52:22 -07:00
from text_generation_server.cache import Cache
from text_generation_server.interceptor import ExceptionInterceptor
from text_generation_server.models import Model, get_model
Pali gemma modeling (#1895) This PR adds paligemma modeling code Blog post: https://huggingface.co/blog/paligemma Transformers PR: https://github.com/huggingface/transformers/pull/30814 install the latest changes and run with ```bash # get the weights # text-generation-server download-weights gv-hf/PaliGemma-base-224px-hf # run TGI text-generation-launcher --model-id gv-hf/PaliGemma-base-224px-hf ``` basic example sending various requests ```python from huggingface_hub import InferenceClient client = InferenceClient("http://127.0.0.1:3000") images = [ "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png", ] prompts = [ "What animal is in this image?", "Name three colors in this image.", "What are 10 colors in this image?", "Where is the cow standing?", "answer en Where is the cow standing?", "Is there a bird in the image?", "Is ther a cow in the image?", "Is there a rabbit in the image?", "how many birds are in the image?", "how many rabbits are in the image?", ] for img in images: print(f"\nImage: {img.split('/')[-1]}") for prompt in prompts: inputs = f"![]({img}){prompt}\n" json_data = { "inputs": inputs, "parameters": { "max_new_tokens": 30, "do_sample": False, }, } generated_output = client.text_generation(prompt, max_new_tokens=30, stream=False) print([f"{prompt}\n{generated_output}"]) ``` --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-05-15 22:58:47 -06:00
from text_generation_server.models.pali_gemma import PaliGemmaBatch
from text_generation_server.models.vlm_causal_lm import (
VlmCausalLMBatch,
)
2023-03-07 10:52:22 -07:00
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
Adding Idefics multi modal model. (#842) Co-Authored-By: Victor Sanh <victorsanh@gmail.com> # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Victor Sanh <victorsanh@gmail.com>
2023-08-17 06:38:49 -06:00
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
MI300 compatibility (#1764) Adds support for AMD Instinct MI300 in TGI. Most changes are: * Support PyTorch TunableOp to pick the GEMM/GEMV kernels for decoding https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable. TunableOp is disabled by default, and can be enabled with `PYTORCH_TUNABLEOP_ENABLED=1`. * Update ROCm dockerfile to PyTorch 2.3 (actually patched with changes from https://github.com/pytorch/pytorch/pull/124362) * Support SILU & Linear custom kernels contributed by AMD * Update vLLM paged attention to https://github.com/fxmarty/rocm-vllm/, branching out of a much more recent commit https://github.com/ROCm/vllm/commit/3489ce7936c5de588916ae3047c44c23c0b0c308 * Support FA2 Triton kernel as recommended by AMD. Can be used by specifying `ROCM_USE_FLASH_ATTN_V2_TRITON=1`. * Update dockerfile to ROCm 6.1 By default, TunableOp tuning results are saved in `/data` (e.g. `/data/tunableop_meta-llama-Llama-2-70b-chat-hf_tp1_rank0.csv`) in order to avoid to have to rerun the tuning at each `docker run`. Example: ``` Validator,PT_VERSION,2.3.0 Validator,ROCM_VERSION,6.1.0.0-82-5fabb4c Validator,HIPBLASLT_VERSION,0.7.0-1549b021 Validator,GCN_ARCH_NAME,gfx942:sramecc+:xnack- Validator,ROCBLAS_VERSION,4.1.0-cefa4a9b-dirty GemmTunableOp_Half_TN,tn_8192_7_28672,Gemm_Rocblas_45475,0.132098 GemmTunableOp_Half_TN,tn_10240_4_8192,Gemm_Rocblas_45546,0.0484431 GemmTunableOp_Half_TN,tn_32000_6_8192,Default,0.149546 GemmTunableOp_Half_TN,tn_32000_3_8192,Gemm_Rocblas_45520,0.147119 GemmTunableOp_Half_TN,tn_8192_3_28672,Gemm_Rocblas_45475,0.132645 GemmTunableOp_Half_TN,tn_10240_3_8192,Gemm_Rocblas_45546,0.0482971 GemmTunableOp_Half_TN,tn_57344_5_8192,Gemm_Rocblas_45520,0.255694 GemmTunableOp_Half_TN,tn_10240_7_8192,Gemm_Rocblas_45517,0.0482522 GemmTunableOp_Half_TN,tn_8192_3_8192,Gemm_Rocblas_45546,0.0444671 GemmTunableOp_Half_TN,tn_8192_5_8192,Gemm_Rocblas_45546,0.0445834 GemmTunableOp_Half_TN,tn_57344_7_8192,Gemm_Rocblas_45520,0.25622 GemmTunableOp_Half_TN,tn_8192_2_28672,Gemm_Rocblas_45475,0.132122 GemmTunableOp_Half_TN,tn_8192_4_8192,Gemm_Rocblas_45517,0.0453191 GemmTunableOp_Half_TN,tn_10240_5_8192,Gemm_Rocblas_45517,0.0482514 GemmTunableOp_Half_TN,tn_8192_5_28672,Gemm_Rocblas_45542,0.133914 GemmTunableOp_Half_TN,tn_8192_2_8192,Gemm_Rocblas_45517,0.0446516 GemmTunableOp_Half_TN,tn_8192_1_28672,Gemm_Hipblaslt_TN_10814,0.131953 GemmTunableOp_Half_TN,tn_10240_2_8192,Gemm_Rocblas_45546,0.0481043 GemmTunableOp_Half_TN,tn_32000_4_8192,Gemm_Rocblas_45520,0.147497 GemmTunableOp_Half_TN,tn_8192_6_28672,Gemm_Rocblas_45529,0.134895 GemmTunableOp_Half_TN,tn_57344_2_8192,Gemm_Rocblas_45520,0.254716 GemmTunableOp_Half_TN,tn_57344_4_8192,Gemm_Rocblas_45520,0.255731 GemmTunableOp_Half_TN,tn_10240_6_8192,Gemm_Rocblas_45517,0.0484816 GemmTunableOp_Half_TN,tn_57344_3_8192,Gemm_Rocblas_45520,0.254701 GemmTunableOp_Half_TN,tn_8192_4_28672,Gemm_Rocblas_45475,0.132159 GemmTunableOp_Half_TN,tn_32000_2_8192,Default,0.147524 GemmTunableOp_Half_TN,tn_32000_5_8192,Default,0.147074 GemmTunableOp_Half_TN,tn_8192_6_8192,Gemm_Rocblas_45546,0.0454045 GemmTunableOp_Half_TN,tn_57344_6_8192,Gemm_Rocblas_45520,0.255582 GemmTunableOp_Half_TN,tn_32000_7_8192,Default,0.146705 GemmTunableOp_Half_TN,tn_8192_7_8192,Gemm_Rocblas_45546,0.0445489 ``` --------- Co-authored-by: Mohit Sharma <mohit21sharma.ms@gmail.com>
2024-05-17 07:30:47 -06:00
from text_generation_server.models.globals import set_model_id
2022-10-08 04:30:12 -06:00
2023-09-27 04:22:09 -06:00
Better graceful shutdown. (#1827) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-29 09:23:40 -06:00
class SignalHandler:
KEEP_PROCESSING = True
def __init__(self):
signal.signal(signal.SIGINT, self.exit_gracefully)
signal.signal(signal.SIGTERM, self.exit_gracefully)
def exit_gracefully(self, signum, frame):
print(f"Exiting gracefully: Signal {signum}")
self.KEEP_PROCESSING = False
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
def __init__(
self,
model: Model,
cache: Cache,
quantize: Optional[str],
server_urls: List[str],
):
2022-10-08 04:30:12 -06:00
self.cache = cache
self.model = model
self.quantize = quantize
2022-10-08 04:30:12 -06:00
self.server_urls = server_urls
# For some reason, inference_mode does not work well with GLOO which we use on CPU
if model.device.type == "cuda":
# Force inference mode for the lifetime of TextGenerationService
self._inference_mode_raii_guard = torch._C._InferenceMode(True)
2022-10-08 04:30:12 -06:00
async def Info(self, request, context):
return self.model.info
async def Health(self, request, context):
if self.model.device.type == "cuda":
torch.zeros((2, 2)).cuda()
return generate_pb2.HealthResponse()
2022-10-08 04:30:12 -06:00
async def ServiceDiscovery(self, request, context):
return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls)
async def ClearCache(self, request, context):
if request.HasField("id"):
self.cache.delete(request.id)
else:
self.cache.clear()
return generate_pb2.ClearCacheResponse()
2022-10-08 04:30:12 -06:00
async def FilterBatch(self, request, context):
batch = self.cache.pop(request.batch_id)
if batch is None:
raise ValueError(f"Batch ID {request.batch_id} not found in cache.")
filtered_batch = batch.filter(request.request_ids)
self.cache.set(filtered_batch)
return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())
async def Warmup(self, request, context):
if self.quantize == "gptq":
try:
# When using GPTQ, Exllama kernels need some global kernels
# For which we have the finale shapes only after the model has loaded
# This will allocate those buffers.
Refactor layers. (#1866) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-05-13 04:44:30 -06:00
from text_generation_server.layers.gptq import (
create_exllama_buffers,
set_device,
)
set_device(self.model.device)
create_exllama_buffers(request.max_prefill_tokens)
except ImportError:
pass
Adding Llava-Next (Llava 1.6) with full support. (#1709) # What does this PR do? - Changed all models to extract `embed_tokens` in order to enable llava to separately call the embeddings and the core model layers. - Added VlmCausalLM to inherit from FlashMistral in order to be maximally supported. The only added logics sits on top and parses images into pixel values, preallocates input_ids space for the image embeddings, and passes them for the model. - Added Clip for the vision tower. - Didn't add flash for the vision tower since there's no padding anyway. - Added heuristic (potentially incomplete) to calculate number of features *before* calculating the clip patches (allows for easier logic reuse of the LLM under the hood). Still needs to be done: - [x] Implement the image parsing in the controller side, to avoid downloading n times per TP shard and also refusing requests too large early and avoid issues where the truncation actually truncates the image. - [ ] Make sure it works with quantization properly. - [x] Make sure it works with TP>1 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-09 13:32:00 -06:00
if self.model.batch_type in {
IdeficsCausalLMBatch,
VlmCausalLMBatch,
Pali gemma modeling (#1895) This PR adds paligemma modeling code Blog post: https://huggingface.co/blog/paligemma Transformers PR: https://github.com/huggingface/transformers/pull/30814 install the latest changes and run with ```bash # get the weights # text-generation-server download-weights gv-hf/PaliGemma-base-224px-hf # run TGI text-generation-launcher --model-id gv-hf/PaliGemma-base-224px-hf ``` basic example sending various requests ```python from huggingface_hub import InferenceClient client = InferenceClient("http://127.0.0.1:3000") images = [ "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png", ] prompts = [ "What animal is in this image?", "Name three colors in this image.", "What are 10 colors in this image?", "Where is the cow standing?", "answer en Where is the cow standing?", "Is there a bird in the image?", "Is ther a cow in the image?", "Is there a rabbit in the image?", "how many birds are in the image?", "how many rabbits are in the image?", ] for img in images: print(f"\nImage: {img.split('/')[-1]}") for prompt in prompts: inputs = f"![]({img}){prompt}\n" json_data = { "inputs": inputs, "parameters": { "max_new_tokens": 30, "do_sample": False, }, } generated_output = client.text_generation(prompt, max_new_tokens=30, stream=False) print([f"{prompt}\n{generated_output}"]) ``` --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-05-15 22:58:47 -06:00
PaliGemmaBatch,
Adding Llava-Next (Llava 1.6) with full support. (#1709) # What does this PR do? - Changed all models to extract `embed_tokens` in order to enable llava to separately call the embeddings and the core model layers. - Added VlmCausalLM to inherit from FlashMistral in order to be maximally supported. The only added logics sits on top and parses images into pixel values, preallocates input_ids space for the image embeddings, and passes them for the model. - Added Clip for the vision tower. - Didn't add flash for the vision tower since there's no padding anyway. - Added heuristic (potentially incomplete) to calculate number of features *before* calculating the clip patches (allows for easier logic reuse of the LLM under the hood). Still needs to be done: - [x] Implement the image parsing in the controller side, to avoid downloading n times per TP shard and also refusing requests too large early and avoid issues where the truncation actually truncates the image. - [ ] Make sure it works with quantization properly. - [x] Make sure it works with TP>1 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-09 13:32:00 -06:00
}: # Hack, i would rather use kwargs in the `from_pb` call
batch = self.model.batch_type.from_pb_processor(
2023-09-27 04:22:09 -06:00
request.batch,
self.model.tokenizer,
self.model.processor,
Adding Llava-Next (Llava 1.6) with full support. (#1709) # What does this PR do? - Changed all models to extract `embed_tokens` in order to enable llava to separately call the embeddings and the core model layers. - Added VlmCausalLM to inherit from FlashMistral in order to be maximally supported. The only added logics sits on top and parses images into pixel values, preallocates input_ids space for the image embeddings, and passes them for the model. - Added Clip for the vision tower. - Didn't add flash for the vision tower since there's no padding anyway. - Added heuristic (potentially incomplete) to calculate number of features *before* calculating the clip patches (allows for easier logic reuse of the LLM under the hood). Still needs to be done: - [x] Implement the image parsing in the controller side, to avoid downloading n times per TP shard and also refusing requests too large early and avoid issues where the truncation actually truncates the image. - [ ] Make sure it works with quantization properly. - [x] Make sure it works with TP>1 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-09 13:32:00 -06:00
self.model.model.config,
2023-09-27 04:22:09 -06:00
self.model.dtype,
self.model.device,
Adding Idefics multi modal model. (#842) Co-Authored-By: Victor Sanh <victorsanh@gmail.com> # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Victor Sanh <victorsanh@gmail.com>
2023-08-17 06:38:49 -06:00
)
else:
batch = self.model.batch_type.from_pb(
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
)
max_supported_total_tokens = self.model.warmup(batch)
2023-07-12 09:05:50 -06:00
return generate_pb2.WarmupResponse(
max_supported_total_tokens=max_supported_total_tokens
)
async def Prefill(self, request, context):
start = time.time_ns()
Adding Llava-Next (Llava 1.6) with full support. (#1709) # What does this PR do? - Changed all models to extract `embed_tokens` in order to enable llava to separately call the embeddings and the core model layers. - Added VlmCausalLM to inherit from FlashMistral in order to be maximally supported. The only added logics sits on top and parses images into pixel values, preallocates input_ids space for the image embeddings, and passes them for the model. - Added Clip for the vision tower. - Didn't add flash for the vision tower since there's no padding anyway. - Added heuristic (potentially incomplete) to calculate number of features *before* calculating the clip patches (allows for easier logic reuse of the LLM under the hood). Still needs to be done: - [x] Implement the image parsing in the controller side, to avoid downloading n times per TP shard and also refusing requests too large early and avoid issues where the truncation actually truncates the image. - [ ] Make sure it works with quantization properly. - [x] Make sure it works with TP>1 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-09 13:32:00 -06:00
if self.model.batch_type in {
IdeficsCausalLMBatch,
VlmCausalLMBatch,
Pali gemma modeling (#1895) This PR adds paligemma modeling code Blog post: https://huggingface.co/blog/paligemma Transformers PR: https://github.com/huggingface/transformers/pull/30814 install the latest changes and run with ```bash # get the weights # text-generation-server download-weights gv-hf/PaliGemma-base-224px-hf # run TGI text-generation-launcher --model-id gv-hf/PaliGemma-base-224px-hf ``` basic example sending various requests ```python from huggingface_hub import InferenceClient client = InferenceClient("http://127.0.0.1:3000") images = [ "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png", ] prompts = [ "What animal is in this image?", "Name three colors in this image.", "What are 10 colors in this image?", "Where is the cow standing?", "answer en Where is the cow standing?", "Is there a bird in the image?", "Is ther a cow in the image?", "Is there a rabbit in the image?", "how many birds are in the image?", "how many rabbits are in the image?", ] for img in images: print(f"\nImage: {img.split('/')[-1]}") for prompt in prompts: inputs = f"![]({img}){prompt}\n" json_data = { "inputs": inputs, "parameters": { "max_new_tokens": 30, "do_sample": False, }, } generated_output = client.text_generation(prompt, max_new_tokens=30, stream=False) print([f"{prompt}\n{generated_output}"]) ``` --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-05-15 22:58:47 -06:00
PaliGemmaBatch,
Adding Llava-Next (Llava 1.6) with full support. (#1709) # What does this PR do? - Changed all models to extract `embed_tokens` in order to enable llava to separately call the embeddings and the core model layers. - Added VlmCausalLM to inherit from FlashMistral in order to be maximally supported. The only added logics sits on top and parses images into pixel values, preallocates input_ids space for the image embeddings, and passes them for the model. - Added Clip for the vision tower. - Didn't add flash for the vision tower since there's no padding anyway. - Added heuristic (potentially incomplete) to calculate number of features *before* calculating the clip patches (allows for easier logic reuse of the LLM under the hood). Still needs to be done: - [x] Implement the image parsing in the controller side, to avoid downloading n times per TP shard and also refusing requests too large early and avoid issues where the truncation actually truncates the image. - [ ] Make sure it works with quantization properly. - [x] Make sure it works with TP>1 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-09 13:32:00 -06:00
}: # Hack, i would rather use kwargs in the `from_pb` call
batch = self.model.batch_type.from_pb_processor(
2023-09-27 04:22:09 -06:00
request.batch,
self.model.tokenizer,
self.model.processor,
Adding Llava-Next (Llava 1.6) with full support. (#1709) # What does this PR do? - Changed all models to extract `embed_tokens` in order to enable llava to separately call the embeddings and the core model layers. - Added VlmCausalLM to inherit from FlashMistral in order to be maximally supported. The only added logics sits on top and parses images into pixel values, preallocates input_ids space for the image embeddings, and passes them for the model. - Added Clip for the vision tower. - Didn't add flash for the vision tower since there's no padding anyway. - Added heuristic (potentially incomplete) to calculate number of features *before* calculating the clip patches (allows for easier logic reuse of the LLM under the hood). Still needs to be done: - [x] Implement the image parsing in the controller side, to avoid downloading n times per TP shard and also refusing requests too large early and avoid issues where the truncation actually truncates the image. - [ ] Make sure it works with quantization properly. - [x] Make sure it works with TP>1 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-09 13:32:00 -06:00
self.model.model.config,
2023-09-27 04:22:09 -06:00
self.model.dtype,
self.model.device,
Adding Idefics multi modal model. (#842) Co-Authored-By: Victor Sanh <victorsanh@gmail.com> # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Victor Sanh <victorsanh@gmail.com>
2023-08-17 06:38:49 -06:00
)
else:
batch = self.model.batch_type.from_pb(
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
)
generations, next_batch, timings = self.model.generate_token(batch)
self.cache.set(next_batch)
return generate_pb2.PrefillResponse(
generations=[generation.to_pb() for generation in generations],
batch=next_batch.to_pb() if next_batch else None,
forward_ns=timings[0],
decode_ns=timings[1],
total_ns=time.time_ns() - start,
2022-10-08 04:30:12 -06:00
)
async def Decode(self, request, context):
start = time.time_ns()
if len(request.batches) == 0:
raise ValueError("Must provide at least one batch")
batches = []
for batch_pb in request.batches:
batch = self.cache.pop(batch_pb.id)
if batch is None:
raise ValueError(f"Batch ID {batch_pb.id} not found in cache.")
batches.append(batch)
if len(batches) == 0:
raise ValueError("All batches are empty")
if len(batches) > 1:
start_concat = time.time_ns()
batch = self.model.batch_type.concatenate(batches)
concat_ns = time.time_ns() - start_concat
else:
batch = batches[0]
concat_ns = None
generations, next_batch, timings = self.model.generate_token(batch)
self.cache.set(next_batch)
return generate_pb2.DecodeResponse(
generations=[generation.to_pb() for generation in generations],
batch=next_batch.to_pb() if next_batch else None,
concat_ns=concat_ns,
forward_ns=timings[0],
decode_ns=timings[1],
total_ns=time.time_ns() - start,
)
2022-10-08 04:30:12 -06:00
2022-10-18 07:19:03 -06:00
def serve(
model_id: str,
revision: Optional[str],
sharded: bool,
quantize: Optional[str],
2023-12-11 04:46:30 -07:00
speculate: Optional[int],
dtype: Optional[str],
trust_remote_code: bool,
uds_path: Path,
):
async def serve_inner(
model_id: str,
revision: Optional[str],
sharded: bool = False,
quantize: Optional[str] = None,
2023-12-11 04:46:30 -07:00
speculate: Optional[int] = None,
dtype: Optional[str] = None,
trust_remote_code: bool = False,
2022-10-08 04:30:12 -06:00
):
2022-10-18 07:19:03 -06:00
unix_socket_template = "unix://{}-{}"
2022-10-08 04:30:12 -06:00
if sharded:
server_urls = [
2022-10-18 07:19:03 -06:00
unix_socket_template.format(uds_path, rank)
for rank in range(int(os.environ["WORLD_SIZE"]))
2022-10-08 04:30:12 -06:00
]
local_url = server_urls[int(os.environ["RANK"])]
2022-10-08 04:30:12 -06:00
else:
2022-10-18 07:19:03 -06:00
local_url = unix_socket_template.format(uds_path, 0)
2022-10-08 04:30:12 -06:00
server_urls = [local_url]
try:
model = get_model(
2023-12-11 06:49:52 -07:00
model_id,
revision,
sharded,
quantize,
speculate,
dtype,
trust_remote_code,
)
except Exception:
logger.exception("Error when initializing model")
raise
2023-02-13 05:02:45 -07:00
server = aio.server(
interceptors=[
ExceptionInterceptor(),
UDSOpenTelemetryAioServerInterceptor(),
]
)
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
TextGenerationService(model, Cache(), quantize, server_urls), server
2022-10-08 04:30:12 -06:00
)
SERVICE_NAMES = (
generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
2022-10-08 04:30:12 -06:00
reflection.SERVICE_NAME,
)
reflection.enable_server_reflection(SERVICE_NAMES, server)
server.add_insecure_port(local_url)
2022-10-08 04:30:12 -06:00
await server.start()
logger.info("Server started at {}".format(local_url))
Fixing signals. (#1910) Taking the signal handles later, so during loads, regular signal handling is done, we only need to handle SIGINT and SIGTERM during real loads to get more graceful shutdowns when queries are in flight. Fixes #1842 # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-05-16 13:40:10 -06:00
signal_handler = SignalHandler()
Better graceful shutdown. (#1827) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-29 09:23:40 -06:00
while signal_handler.KEEP_PROCESSING:
await asyncio.sleep(0.5)
2022-10-08 04:30:12 -06:00
MI300 compatibility (#1764) Adds support for AMD Instinct MI300 in TGI. Most changes are: * Support PyTorch TunableOp to pick the GEMM/GEMV kernels for decoding https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable. TunableOp is disabled by default, and can be enabled with `PYTORCH_TUNABLEOP_ENABLED=1`. * Update ROCm dockerfile to PyTorch 2.3 (actually patched with changes from https://github.com/pytorch/pytorch/pull/124362) * Support SILU & Linear custom kernels contributed by AMD * Update vLLM paged attention to https://github.com/fxmarty/rocm-vllm/, branching out of a much more recent commit https://github.com/ROCm/vllm/commit/3489ce7936c5de588916ae3047c44c23c0b0c308 * Support FA2 Triton kernel as recommended by AMD. Can be used by specifying `ROCM_USE_FLASH_ATTN_V2_TRITON=1`. * Update dockerfile to ROCm 6.1 By default, TunableOp tuning results are saved in `/data` (e.g. `/data/tunableop_meta-llama-Llama-2-70b-chat-hf_tp1_rank0.csv`) in order to avoid to have to rerun the tuning at each `docker run`. Example: ``` Validator,PT_VERSION,2.3.0 Validator,ROCM_VERSION,6.1.0.0-82-5fabb4c Validator,HIPBLASLT_VERSION,0.7.0-1549b021 Validator,GCN_ARCH_NAME,gfx942:sramecc+:xnack- Validator,ROCBLAS_VERSION,4.1.0-cefa4a9b-dirty GemmTunableOp_Half_TN,tn_8192_7_28672,Gemm_Rocblas_45475,0.132098 GemmTunableOp_Half_TN,tn_10240_4_8192,Gemm_Rocblas_45546,0.0484431 GemmTunableOp_Half_TN,tn_32000_6_8192,Default,0.149546 GemmTunableOp_Half_TN,tn_32000_3_8192,Gemm_Rocblas_45520,0.147119 GemmTunableOp_Half_TN,tn_8192_3_28672,Gemm_Rocblas_45475,0.132645 GemmTunableOp_Half_TN,tn_10240_3_8192,Gemm_Rocblas_45546,0.0482971 GemmTunableOp_Half_TN,tn_57344_5_8192,Gemm_Rocblas_45520,0.255694 GemmTunableOp_Half_TN,tn_10240_7_8192,Gemm_Rocblas_45517,0.0482522 GemmTunableOp_Half_TN,tn_8192_3_8192,Gemm_Rocblas_45546,0.0444671 GemmTunableOp_Half_TN,tn_8192_5_8192,Gemm_Rocblas_45546,0.0445834 GemmTunableOp_Half_TN,tn_57344_7_8192,Gemm_Rocblas_45520,0.25622 GemmTunableOp_Half_TN,tn_8192_2_28672,Gemm_Rocblas_45475,0.132122 GemmTunableOp_Half_TN,tn_8192_4_8192,Gemm_Rocblas_45517,0.0453191 GemmTunableOp_Half_TN,tn_10240_5_8192,Gemm_Rocblas_45517,0.0482514 GemmTunableOp_Half_TN,tn_8192_5_28672,Gemm_Rocblas_45542,0.133914 GemmTunableOp_Half_TN,tn_8192_2_8192,Gemm_Rocblas_45517,0.0446516 GemmTunableOp_Half_TN,tn_8192_1_28672,Gemm_Hipblaslt_TN_10814,0.131953 GemmTunableOp_Half_TN,tn_10240_2_8192,Gemm_Rocblas_45546,0.0481043 GemmTunableOp_Half_TN,tn_32000_4_8192,Gemm_Rocblas_45520,0.147497 GemmTunableOp_Half_TN,tn_8192_6_28672,Gemm_Rocblas_45529,0.134895 GemmTunableOp_Half_TN,tn_57344_2_8192,Gemm_Rocblas_45520,0.254716 GemmTunableOp_Half_TN,tn_57344_4_8192,Gemm_Rocblas_45520,0.255731 GemmTunableOp_Half_TN,tn_10240_6_8192,Gemm_Rocblas_45517,0.0484816 GemmTunableOp_Half_TN,tn_57344_3_8192,Gemm_Rocblas_45520,0.254701 GemmTunableOp_Half_TN,tn_8192_4_28672,Gemm_Rocblas_45475,0.132159 GemmTunableOp_Half_TN,tn_32000_2_8192,Default,0.147524 GemmTunableOp_Half_TN,tn_32000_5_8192,Default,0.147074 GemmTunableOp_Half_TN,tn_8192_6_8192,Gemm_Rocblas_45546,0.0454045 GemmTunableOp_Half_TN,tn_57344_6_8192,Gemm_Rocblas_45520,0.255582 GemmTunableOp_Half_TN,tn_32000_7_8192,Default,0.146705 GemmTunableOp_Half_TN,tn_8192_7_8192,Gemm_Rocblas_45546,0.0445489 ``` --------- Co-authored-by: Mohit Sharma <mohit21sharma.ms@gmail.com>
2024-05-17 07:30:47 -06:00
set_model_id(model_id)
asyncio.run(
2023-12-11 06:49:52 -07:00
serve_inner(
model_id, revision, sharded, quantize, speculate, dtype, trust_remote_code
)
)