Adding Llava-Next (Llava 1.6) with full support. (#1709)
# What does this PR do?
- Changed all models to extract `embed_tokens` in order to enable llava
to separately call the embeddings and the core model layers.
- Added VlmCausalLM to inherit from FlashMistral in order to be
maximally supported. The only added logics sits on top and parses images
into pixel values, preallocates input_ids space for the image
embeddings, and passes them for the model.
- Added Clip for the vision tower.
- Didn't add flash for the vision tower since there's no padding anyway.
- Added heuristic (potentially incomplete) to calculate number of
features *before* calculating the clip patches (allows for easier logic
reuse of the LLM under the hood).
Still needs to be done:
- [x] Implement the image parsing in the controller side, to avoid
downloading n times per TP shard and also refusing requests too large
early and avoid issues where the truncation actually truncates the
image.
- [ ] Make sure it works with quantization properly.
- [x] Make sure it works with TP>1
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-04-09 13:32:00 -06:00
pub mod config ;
2023-04-26 12:23:54 -06:00
mod health ;
2023-02-02 06:59:27 -07:00
/// Text Generation Inference Webserver
2023-02-02 07:02:04 -07:00
mod infer ;
2023-02-02 06:59:27 -07:00
mod queue ;
2022-10-17 10:27:33 -06:00
pub mod server ;
2022-10-18 07:19:03 -06:00
mod validation ;
2022-10-17 06:59:00 -06:00
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
use infer ::{ Infer , InferError , InferStreamResponse } ;
2023-02-02 06:59:27 -07:00
use queue ::{ Entry , Queue } ;
2022-10-18 07:19:03 -06:00
use serde ::{ Deserialize , Serialize } ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
use tokio ::sync ::OwnedSemaphorePermit ;
use tokio_stream ::wrappers ::UnboundedReceiverStream ;
2024-05-16 08:59:05 -06:00
use tracing ::warn ;
2023-02-03 04:43:37 -07:00
use utoipa ::ToSchema ;
2022-10-17 06:59:00 -06:00
use validation ::Validation ;
2022-10-18 07:19:03 -06:00
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
/// Type alias for generation responses
pub ( crate ) type GenerateStreamResponse = (
OwnedSemaphorePermit ,
u32 , // input_length
UnboundedReceiverStream < Result < InferStreamResponse , InferError > > ,
) ;
2024-02-20 06:04:51 -07:00
#[ derive(Clone, Deserialize, ToSchema) ]
pub ( crate ) struct VertexInstance {
#[ schema(example = " What is Deep Learning? " ) ]
pub inputs : String ,
#[ schema(nullable = true, default = " null " , example = " null " ) ]
pub parameters : Option < GenerateParameters > ,
}
#[ derive(Deserialize, ToSchema) ]
pub ( crate ) struct VertexRequest {
#[ serde(rename = " instances " ) ]
pub instances : Vec < VertexInstance > ,
}
#[ derive(Clone, Deserialize, ToSchema, Serialize) ]
pub ( crate ) struct VertexResponse {
pub predictions : Vec < String > ,
}
2023-04-18 08:16:06 -06:00
/// Hub type
#[ derive(Clone, Debug, Deserialize) ]
2023-04-21 07:36:29 -06:00
pub struct HubModelInfo {
2023-04-18 08:16:06 -06:00
#[ serde(rename(deserialize = " id " )) ]
pub model_id : String ,
pub sha : Option < String > ,
pub pipeline_tag : Option < String > ,
}
2024-04-10 09:20:25 -06:00
#[ derive(Debug, Clone, Deserialize, PartialEq) ]
pub struct ChatTemplate {
name : String ,
template : String ,
}
#[ derive(Debug, Clone, Deserialize, PartialEq) ]
#[ serde(untagged) ]
pub enum ChatTemplateVersions {
Single ( String ) ,
Multiple ( Vec < ChatTemplate > ) ,
}
#[ derive(Debug, Clone, Deserialize, Default) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub struct HubTokenizerConfig {
2024-04-10 09:20:25 -06:00
pub chat_template : Option < ChatTemplateVersions > ,
2024-02-29 08:44:20 -07:00
pub completion_template : Option < String > ,
2024-02-13 08:01:02 -07:00
#[ serde(deserialize_with = " token_serde::deserialize " ) ]
2024-01-18 04:31:56 -07:00
pub bos_token : Option < String > ,
2024-02-13 08:01:02 -07:00
#[ serde(deserialize_with = " token_serde::deserialize " ) ]
2024-01-18 04:31:56 -07:00
pub eos_token : Option < String > ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
}
impl HubTokenizerConfig {
2024-04-23 15:38:30 -06:00
pub fn from_file < P : AsRef < std ::path ::Path > > ( filename : P ) -> Option < Self > {
let content = std ::fs ::read_to_string ( filename ) . ok ( ) ? ;
serde_json ::from_str ( & content ) . ok ( )
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
}
}
2024-04-16 07:02:46 -06:00
#[ derive(Clone, Debug, Deserialize, ToSchema, Serialize) ]
2024-02-15 02:28:10 -07:00
#[ serde(tag = " type " , content = " value " ) ]
pub ( crate ) enum GrammarType {
2024-02-21 03:05:32 -07:00
/// A string that represents a [JSON Schema](https://json-schema.org/).
///
/// JSON Schema is a declarative language that allows to annotate JSON documents
/// with types and descriptions.
#[ serde(rename = " json " ) ]
#[ schema(example = json ! ({ " properties " : { " location " :{ " type " : " string " }}})) ]
Json ( serde_json ::Value ) ,
2024-02-15 02:28:10 -07:00
#[ serde(rename = " regex " ) ]
Regex ( String ) ,
}
2024-02-13 08:01:02 -07:00
mod token_serde {
use super ::* ;
use serde ::de ;
use serde ::Deserializer ;
use serde_json ::Value ;
pub fn deserialize < ' de , D > ( deserializer : D ) -> Result < Option < String > , D ::Error >
where
D : Deserializer < ' de > ,
{
let value = Value ::deserialize ( deserializer ) ? ;
match value {
Value ::String ( s ) = > Ok ( Some ( s ) ) ,
Value ::Object ( map ) = > {
if let Some ( content ) = map . get ( " content " ) . and_then ( | v | v . as_str ( ) ) {
Ok ( Some ( content . to_string ( ) ) )
} else {
Err ( de ::Error ::custom (
" content key not found in structured token " ,
) )
}
}
2024-04-23 08:26:54 -06:00
Value ::Null = > Ok ( None ) ,
2024-02-13 08:01:02 -07:00
_ = > Err ( de ::Error ::custom ( " invalid token format " ) ) ,
}
}
}
2023-04-18 08:16:06 -06:00
#[ derive(Clone, Debug, Serialize, ToSchema) ]
pub struct Info {
2023-04-25 05:11:18 -06:00
/// Model info
2023-04-18 08:16:06 -06:00
#[ schema(example = " bigscience/blomm-560m " ) ]
pub model_id : String ,
#[ schema(nullable = true, example = " e985a63cdc139290c5f700ff1929f0b5942cced2 " ) ]
pub model_sha : Option < String > ,
2023-04-21 07:36:29 -06:00
#[ schema(example = " torch.float16 " ) ]
pub model_dtype : String ,
#[ schema(example = " cuda " ) ]
pub model_device_type : String ,
2023-04-18 08:16:06 -06:00
#[ schema(nullable = true, example = " text-generation " ) ]
pub model_pipeline_tag : Option < String > ,
2023-04-25 05:11:18 -06:00
/// Router Parameters
#[ schema(example = " 128 " ) ]
pub max_concurrent_requests : usize ,
#[ schema(example = " 2 " ) ]
pub max_best_of : usize ,
#[ schema(example = " 4 " ) ]
pub max_stop_sequences : usize ,
#[ schema(example = " 1024 " ) ]
pub max_input_length : usize ,
#[ schema(example = " 2048 " ) ]
pub max_total_tokens : usize ,
#[ schema(example = " 1.2 " ) ]
pub waiting_served_ratio : f32 ,
#[ schema(example = " 32000 " ) ]
pub max_batch_total_tokens : u32 ,
#[ schema(example = " 20 " ) ]
pub max_waiting_tokens : usize ,
2024-02-09 04:38:41 -07:00
#[ schema(nullable = true, example = " null " ) ]
pub max_batch_size : Option < usize > ,
2023-04-25 05:11:18 -06:00
#[ schema(example = " 2 " ) ]
pub validation_workers : usize ,
2024-04-17 02:41:12 -06:00
#[ schema(example = " 32 " ) ]
pub max_client_batch_size : usize ,
2023-04-25 05:11:18 -06:00
/// Router Info
2024-05-03 08:39:04 -06:00
#[ schema(example = " text-generation-router " ) ]
pub router : & 'static str ,
2023-04-18 08:16:06 -06:00
#[ schema(example = " 0.5.0 " ) ]
pub version : & 'static str ,
#[ schema(nullable = true, example = " null " ) ]
pub sha : Option < & 'static str > ,
2023-05-02 07:43:19 -06:00
#[ schema(nullable = true, example = " null " ) ]
pub docker_label : Option < & 'static str > ,
2023-04-18 08:16:06 -06:00
}
2024-02-20 06:04:51 -07:00
#[ derive(Clone, Debug, Deserialize, ToSchema, Default) ]
2022-10-18 07:19:03 -06:00
pub ( crate ) struct GenerateParameters {
2024-04-23 08:22:12 -06:00
/// Generate best_of sequences and return the one if the highest token logprobs.
2023-03-09 07:30:54 -07:00
#[ serde(default) ]
#[ schema(exclusive_minimum = 0, nullable = true, default = " null " , example = 1) ]
pub best_of : Option < usize > ,
2024-04-23 08:22:12 -06:00
/// The value used to module the logits distribution.
2023-02-03 04:43:37 -07:00
#[ serde(default) ]
#[ schema(
exclusive_minimum = 0.0 ,
nullable = true ,
default = " null " ,
example = 0.5
) ]
pub temperature : Option < f32 > ,
2024-04-23 08:22:12 -06:00
/// The parameter for repetition penalty. 1.0 means no penalty.
/// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
2023-02-03 04:43:37 -07:00
#[ serde(default) ]
#[ schema(
exclusive_minimum = 0.0 ,
nullable = true ,
default = " null " ,
example = 1.03
) ]
pub repetition_penalty : Option < f32 > ,
2024-04-23 08:22:12 -06:00
/// The parameter for frequency penalty. 1.0 means no penalty
/// Penalize new tokens based on their existing frequency in the text so far,
/// decreasing the model's likelihood to repeat the same line verbatim.
2023-02-03 04:43:37 -07:00
#[ serde(default) ]
2024-02-08 10:41:25 -07:00
#[ schema(
exclusive_minimum = - 2.0 ,
nullable = true ,
default = " null " ,
example = 0.1
) ]
pub frequency_penalty : Option < f32 > ,
2024-04-23 08:22:12 -06:00
/// The number of highest probability vocabulary tokens to keep for top-k-filtering.
2024-02-08 10:41:25 -07:00
#[ serde(default) ]
2023-02-03 04:43:37 -07:00
#[ schema(exclusive_minimum = 0, nullable = true, default = " null " , example = 10) ]
pub top_k : Option < i32 > ,
2024-04-23 08:22:12 -06:00
/// Top-p value for nucleus sampling.
2023-02-03 04:43:37 -07:00
#[ serde(default) ]
#[ schema(
exclusive_minimum = 0.0 ,
maximum = 1.0 ,
nullable = true ,
default = " null " ,
example = 0.95
) ]
pub top_p : Option < f32 > ,
2024-04-23 08:22:12 -06:00
/// Typical Decoding mass
/// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
2023-02-28 02:19:32 -07:00
#[ serde(default) ]
2023-03-09 03:33:57 -07:00
#[ schema(
exclusive_minimum = 0.0 ,
maximum = 1.0 ,
nullable = true ,
default = " null " ,
example = 0.95
) ]
pub typical_p : Option < f32 > ,
2024-04-23 08:22:12 -06:00
/// Activate logits sampling.
2023-03-09 03:33:57 -07:00
#[ serde(default) ]
2023-02-03 04:43:37 -07:00
#[ schema(default = " false " , example = true) ]
2022-10-18 07:19:03 -06:00
pub do_sample : bool ,
2024-04-23 08:22:12 -06:00
/// Maximum number of tokens to generate.
2022-10-18 07:19:03 -06:00
#[ serde(default = " default_max_new_tokens " ) ]
2023-12-13 01:19:19 -07:00
#[ schema(nullable = true, default = " 100 " , example = " 20 " ) ]
2023-10-04 09:38:42 -06:00
pub max_new_tokens : Option < u32 > ,
2024-04-23 08:22:12 -06:00
/// Whether to prepend the prompt to the generated text
2022-12-15 09:03:56 -07:00
#[ serde(default) ]
2023-03-09 07:30:54 -07:00
#[ schema(nullable = true, default = " null " , example = false) ]
2023-02-28 02:19:32 -07:00
pub return_full_text : Option < bool > ,
2024-04-23 08:22:12 -06:00
/// Stop generating tokens if a member of `stop` is generated.
2023-02-28 02:19:32 -07:00
#[ serde(default) ]
2023-02-27 06:56:58 -07:00
#[ schema(inline, max_items = 4, example = json ! ( [ " photographer " ] )) ]
2022-12-12 10:25:22 -07:00
pub stop : Vec < String > ,
2024-04-23 08:22:12 -06:00
/// Truncate inputs tokens to the given size.
2022-12-15 09:03:56 -07:00
#[ serde(default) ]
2023-03-09 07:30:54 -07:00
#[ schema(nullable = true, default = " null " , example = " null " ) ]
2023-03-09 05:10:30 -07:00
pub truncate : Option < usize > ,
2024-04-23 08:22:12 -06:00
/// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
2023-03-09 05:10:30 -07:00
#[ serde(default) ]
2023-03-02 04:30:41 -07:00
#[ schema(default = " false " , example = true) ]
pub watermark : bool ,
2024-04-23 08:22:12 -06:00
/// Whether to return generation details.
2023-03-02 04:30:41 -07:00
#[ serde(default) ]
2023-02-03 04:43:37 -07:00
#[ schema(default = " true " ) ]
2022-12-15 09:03:56 -07:00
pub details : bool ,
2024-04-23 08:22:12 -06:00
/// Whether to return decoder input token logprobs and ids.
2023-01-30 07:36:16 -07:00
#[ serde(default) ]
2024-04-18 09:17:40 -06:00
#[ schema(default = " false " ) ]
2023-06-02 09:12:30 -06:00
pub decoder_input_details : bool ,
2024-04-23 08:22:12 -06:00
/// Random sampling seed.
2023-06-02 09:12:30 -06:00
#[ serde(default) ]
2023-03-09 07:30:54 -07:00
#[ schema(
exclusive_minimum = 0 ,
nullable = true ,
default = " null " ,
example = " null "
) ]
2023-01-30 07:36:16 -07:00
pub seed : Option < u64 > ,
2024-04-23 08:22:12 -06:00
/// The number of highest probability vocabulary tokens to keep for top-n-filtering.
2023-08-28 03:43:47 -06:00
#[ serde(default) ]
#[ schema(exclusive_minimum = 0, nullable = true, default = " null " , example = 5) ]
pub top_n_tokens : Option < u32 > ,
2024-04-23 08:22:12 -06:00
/// Grammar constraints for the generation.
2024-02-15 02:28:10 -07:00
#[ serde(default) ]
2024-04-18 09:17:40 -06:00
#[ schema(nullable = true, default = " null " , example = " null " ) ]
2024-02-15 02:28:10 -07:00
pub grammar : Option < GrammarType > ,
2022-10-18 07:19:03 -06:00
}
2023-10-04 09:38:42 -06:00
fn default_max_new_tokens ( ) -> Option < u32 > {
2023-12-13 01:19:19 -07:00
Some ( 100 )
2022-10-18 07:19:03 -06:00
}
fn default_parameters ( ) -> GenerateParameters {
GenerateParameters {
2023-03-09 07:30:54 -07:00
best_of : None ,
2023-02-03 04:43:37 -07:00
temperature : None ,
repetition_penalty : None ,
2024-02-08 10:41:25 -07:00
frequency_penalty : None ,
2023-02-03 04:43:37 -07:00
top_k : None ,
top_p : None ,
2023-03-09 03:33:57 -07:00
typical_p : None ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
do_sample : true ,
2022-10-18 07:19:03 -06:00
max_new_tokens : default_max_new_tokens ( ) ,
2023-02-28 02:19:32 -07:00
return_full_text : None ,
2023-03-02 04:30:41 -07:00
stop : Vec ::new ( ) ,
2023-03-09 05:10:30 -07:00
truncate : None ,
2023-03-02 04:30:41 -07:00
watermark : false ,
2022-12-15 09:03:56 -07:00
details : false ,
2023-06-02 09:12:30 -06:00
decoder_input_details : false ,
2023-01-30 07:36:16 -07:00
seed : None ,
2023-08-28 03:43:47 -06:00
top_n_tokens : None ,
2024-02-15 02:28:10 -07:00
grammar : None ,
2022-10-18 07:19:03 -06:00
}
}
2024-04-17 02:41:12 -06:00
mod prompt_serde {
use serde ::{ self , Deserialize , Deserializer } ;
use serde_json ::Value ;
pub fn deserialize < ' de , D > ( deserializer : D ) -> Result < Vec < String > , D ::Error >
where
D : Deserializer < ' de > ,
{
let value = Value ::deserialize ( deserializer ) ? ;
match value {
Value ::String ( s ) = > Ok ( vec! [ s ] ) ,
Value ::Array ( arr ) if arr . is_empty ( ) = > Err ( serde ::de ::Error ::custom (
" Empty array detected. Do not use an empty array for the prompt. " ,
) ) ,
Value ::Array ( arr ) = > arr
. iter ( )
. map ( | v | match v {
Value ::String ( s ) = > Ok ( s . to_owned ( ) ) ,
_ = > Err ( serde ::de ::Error ::custom ( " Expected a string " ) ) ,
} )
. collect ( ) ,
_ = > Err ( serde ::de ::Error ::custom (
" Expected a string or an array of strings " ,
) ) ,
}
}
}
2024-02-29 08:44:20 -07:00
#[ derive(Clone, Deserialize, Serialize, ToSchema, Debug) ]
pub struct CompletionRequest {
/// UNUSED
#[ schema(example = " mistralai/Mistral-7B-Instruct-v0.2 " ) ]
/// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
pub model : String ,
/// The prompt to generate completions for.
#[ schema(example = " What is Deep Learning? " ) ]
2024-04-17 02:41:12 -06:00
#[ serde(deserialize_with = " prompt_serde::deserialize " ) ]
pub prompt : Vec < String > ,
2024-02-29 08:44:20 -07:00
/// The maximum number of tokens that can be generated in the chat completion.
#[ serde(default) ]
#[ schema(default = " 32 " ) ]
pub max_tokens : Option < u32 > ,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
/// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
#[ serde(default) ]
#[ schema(nullable = true, example = 1.0) ]
pub temperature : Option < f32 > ,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
/// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
#[ serde(default) ]
#[ schema(nullable = true, example = 0.95) ]
pub top_p : Option < f32 > ,
#[ serde(default = " bool::default " ) ]
pub stream : bool ,
#[ schema(nullable = true, example = 42) ]
pub seed : Option < u64 > ,
/// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
/// please see the completion_template field in the model's tokenizer_config.json file for completion template.
#[ serde(default) ]
pub suffix : Option < String > ,
#[ serde(default) ]
pub repetition_penalty : Option < f32 > ,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
/// decreasing the model's likelihood to repeat the same line verbatim.
#[ serde(default) ]
#[ schema(example = " 1.0 " ) ]
pub frequency_penalty : Option < f32 > ,
}
#[ derive(Clone, Deserialize, Serialize, ToSchema, Default) ]
pub ( crate ) struct Completion {
pub id : String ,
pub object : String ,
#[ schema(example = " 1706270835 " ) ]
pub created : u64 ,
#[ schema(example = " mistralai/Mistral-7B-Instruct-v0.2 " ) ]
pub model : String ,
pub system_fingerprint : String ,
pub choices : Vec < CompletionComplete > ,
pub usage : Usage ,
}
#[ derive(Clone, Deserialize, Serialize, ToSchema) ]
pub ( crate ) struct CompletionComplete {
pub index : u32 ,
pub text : String ,
pub logprobs : Option < Vec < f32 > > ,
pub finish_reason : String ,
}
2024-01-26 08:07:31 -07:00
#[ derive(Clone, Deserialize, Serialize, ToSchema) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub ( crate ) struct ChatCompletion {
pub id : String ,
pub object : String ,
2024-01-26 08:07:31 -07:00
#[ schema(example = " 1706270835 " ) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub created : u64 ,
2024-01-26 08:07:31 -07:00
#[ schema(example = " mistralai/Mistral-7B-Instruct-v0.2 " ) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub model : String ,
pub system_fingerprint : String ,
pub choices : Vec < ChatCompletionComplete > ,
pub usage : Usage ,
}
2024-01-26 08:07:31 -07:00
#[ derive(Clone, Deserialize, Serialize, ToSchema) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub ( crate ) struct ChatCompletionComplete {
pub index : u32 ,
2024-05-16 08:59:05 -06:00
pub message : OutputMessage ,
2024-02-08 10:41:25 -07:00
pub logprobs : Option < ChatCompletionLogprobs > ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub finish_reason : String ,
}
2024-02-08 10:41:25 -07:00
#[ derive(Clone, Deserialize, Serialize, ToSchema) ]
pub ( crate ) struct ChatCompletionLogprobs {
content : Vec < ChatCompletionLogprob > ,
}
impl From < ( Token , Vec < Token > ) > for ChatCompletionLogprobs {
fn from ( value : ( Token , Vec < Token > ) ) -> Self {
let ( token , top_tokens ) = value ;
Self {
content : vec ! [ ChatCompletionLogprob {
token : token . text ,
logprob : token . logprob ,
top_logprobs : top_tokens
. into_iter ( )
. map ( | t | ChatCompletionTopLogprob {
token : t . text ,
logprob : t . logprob ,
} )
. collect ( ) ,
} ] ,
}
}
}
impl From < ( Vec < Token > , Vec < Vec < Token > > ) > for ChatCompletionLogprobs {
fn from ( value : ( Vec < Token > , Vec < Vec < Token > > ) ) -> Self {
let ( tokens , top_tokens ) = value ;
fix: adjust logprob response logic (#1682)
This PR fixes a bug with `ChatCompletionLogprobs` where if
`top_tokens.len() == 0` empty results were returned.
```bash
curl http://localhost:3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"logprobs": true,
"messages": [
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": false,
"max_tokens": 20
}'
```
response
```json
{"id":"","object":"text_completion","created":1711588522,"model":"google/gemma-2b-it","system_fingerprint":"1.4.4-native","choices":[{"index":0,"message":{"role":"assistant","content":"**Deep learning** is a subset of machine learning (ML) that emphasizes the creation of **artificial"},"logprobs":{"content":[{"token":"**","logprob":-0.22558594,"top_logprobs":[]},{"token":"Deep","logprob":-0.0014877319,"top_logprobs":[]},{"token":" learning","logprob":-0.12695312,"top_logprobs":[]},{"token":"**","logprob":-0.055664062,"top_logprobs":[]},{"token":" is","logprob":-0.00090026855,"top_logprobs":[]},{"token":" a","logprob":-0.006072998,"top_logprobs":[]},{"token":" subset","logprob":-2.25,"top_logprobs":[]},{"token":" of","logprob":-0.00031089783,"top_logprobs":[]},{"token":" machine","logprob":-0.091308594,"top_logprobs":[]},{"token":" learning","logprob":-0.00002348423,"top_logprobs":[]},{"token":" (","logprob":-1.671875,"top_logprobs":[]},{"token":"ML","logprob":-0.00040626526,"top_logprobs":[]},{"token":")","logprob":-0.00016212463,"top_logprobs":[]},{"token":" that","logprob":-0.13769531,"top_logprobs":[]},{"token":" emphasizes","logprob":-4.03125,"top_logprobs":[]},{"token":" the","logprob":-0.2890625,"top_logprobs":[]},{"token":" creation","logprob":-3.109375,"top_logprobs":[]},{"token":" of","logprob":-0.00024032593,"top_logprobs":[]},{"token":" **","logprob":-1.2265625,"top_logprobs":[]},{"token":"artificial","logprob":-0.10546875,"top_logprobs":[]}]},"finish_reason":"length"}],"usage":{"prompt_tokens":15,"completion_tokens":20,"total_tokens":35}}
```
2024-03-28 10:01:46 -06:00
// Create an iterator that produces None for top_tokens once it's exhausted
let top_tokens_iter = top_tokens
. into_iter ( )
. map ( Some )
. chain ( std ::iter ::repeat ( None ) ) ;
let content = tokens
. into_iter ( )
. zip ( top_tokens_iter )
. map ( | ( t , top_t_option ) | ChatCompletionLogprob {
token : t . text ,
logprob : t . logprob ,
top_logprobs : match top_t_option {
Some ( top_t ) = > top_t
2024-02-08 10:41:25 -07:00
. into_iter ( )
. map ( | t | ChatCompletionTopLogprob {
token : t . text ,
logprob : t . logprob ,
} )
. collect ( ) ,
fix: adjust logprob response logic (#1682)
This PR fixes a bug with `ChatCompletionLogprobs` where if
`top_tokens.len() == 0` empty results were returned.
```bash
curl http://localhost:3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"logprobs": true,
"messages": [
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": false,
"max_tokens": 20
}'
```
response
```json
{"id":"","object":"text_completion","created":1711588522,"model":"google/gemma-2b-it","system_fingerprint":"1.4.4-native","choices":[{"index":0,"message":{"role":"assistant","content":"**Deep learning** is a subset of machine learning (ML) that emphasizes the creation of **artificial"},"logprobs":{"content":[{"token":"**","logprob":-0.22558594,"top_logprobs":[]},{"token":"Deep","logprob":-0.0014877319,"top_logprobs":[]},{"token":" learning","logprob":-0.12695312,"top_logprobs":[]},{"token":"**","logprob":-0.055664062,"top_logprobs":[]},{"token":" is","logprob":-0.00090026855,"top_logprobs":[]},{"token":" a","logprob":-0.006072998,"top_logprobs":[]},{"token":" subset","logprob":-2.25,"top_logprobs":[]},{"token":" of","logprob":-0.00031089783,"top_logprobs":[]},{"token":" machine","logprob":-0.091308594,"top_logprobs":[]},{"token":" learning","logprob":-0.00002348423,"top_logprobs":[]},{"token":" (","logprob":-1.671875,"top_logprobs":[]},{"token":"ML","logprob":-0.00040626526,"top_logprobs":[]},{"token":")","logprob":-0.00016212463,"top_logprobs":[]},{"token":" that","logprob":-0.13769531,"top_logprobs":[]},{"token":" emphasizes","logprob":-4.03125,"top_logprobs":[]},{"token":" the","logprob":-0.2890625,"top_logprobs":[]},{"token":" creation","logprob":-3.109375,"top_logprobs":[]},{"token":" of","logprob":-0.00024032593,"top_logprobs":[]},{"token":" **","logprob":-1.2265625,"top_logprobs":[]},{"token":"artificial","logprob":-0.10546875,"top_logprobs":[]}]},"finish_reason":"length"}],"usage":{"prompt_tokens":15,"completion_tokens":20,"total_tokens":35}}
```
2024-03-28 10:01:46 -06:00
None = > vec! [ ] , // Handle the case where there are no top tokens
} ,
} )
. collect ( ) ;
Self { content }
2024-02-08 10:41:25 -07:00
}
}
#[ derive(Clone, Deserialize, Serialize, ToSchema) ]
pub ( crate ) struct ChatCompletionLogprob {
token : String ,
logprob : f32 ,
top_logprobs : Vec < ChatCompletionTopLogprob > ,
}
#[ derive(Clone, Deserialize, Serialize, ToSchema) ]
pub ( crate ) struct ChatCompletionTopLogprob {
token : String ,
logprob : f32 ,
}
2024-02-29 08:44:20 -07:00
#[ derive(Clone, Deserialize, Serialize, ToSchema, Default) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub ( crate ) struct Usage {
pub prompt_tokens : u32 ,
pub completion_tokens : u32 ,
pub total_tokens : u32 ,
}
impl ChatCompletion {
pub ( crate ) fn new (
model : String ,
system_fingerprint : String ,
2024-02-28 03:10:27 -07:00
output : Option < String > ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
created : u64 ,
details : Details ,
return_logprobs : bool ,
2024-03-21 10:45:56 -06:00
tool_calls : Option < Vec < ToolCall > > ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
) -> Self {
2024-05-16 08:59:05 -06:00
let message = match ( output , tool_calls ) {
( Some ( content ) , None ) = > OutputMessage ::ChatMessage ( TextMessage {
role : " assistant " . into ( ) ,
content ,
} ) ,
( None , Some ( tool_calls ) ) = > OutputMessage ::ToolCall ( ToolCallMessage {
role : " assistant " . to_string ( ) ,
tool_calls ,
} ) ,
( Some ( output ) , Some ( _ ) ) = > {
warn! ( " Received both chat and tool call " ) ;
OutputMessage ::ChatMessage ( TextMessage {
role : " assistant " . into ( ) ,
content : output ,
} )
}
( None , None ) = > {
warn! ( " Didn't receive an answer " ) ;
OutputMessage ::ChatMessage ( TextMessage {
role : " assistant " . into ( ) ,
content : " " . to_string ( ) ,
} )
}
} ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
Self {
id : String ::new ( ) ,
object : " text_completion " . into ( ) ,
created ,
model ,
system_fingerprint ,
choices : vec ! [ ChatCompletionComplete {
index : 0 ,
2024-05-16 08:59:05 -06:00
message ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
logprobs : return_logprobs
2024-02-08 10:41:25 -07:00
. then ( | | ChatCompletionLogprobs ::from ( ( details . tokens , details . top_tokens ) ) ) ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
finish_reason : details . finish_reason . to_string ( ) ,
} ] ,
usage : Usage {
prompt_tokens : details . prefill . len ( ) as u32 ,
completion_tokens : details . generated_tokens ,
total_tokens : details . prefill . len ( ) as u32 + details . generated_tokens ,
} ,
}
}
}
2024-02-29 08:44:20 -07:00
#[ derive(Clone, Deserialize, Serialize, ToSchema) ]
pub ( crate ) struct CompletionCompleteChunk {
pub id : String ,
pub object : String ,
pub created : u64 ,
pub choices : Vec < CompletionComplete > ,
pub model : String ,
pub system_fingerprint : String ,
}
2024-05-16 08:59:05 -06:00
2024-05-17 03:35:49 -06:00
#[ derive(Clone, Serialize, ToSchema) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub ( crate ) struct ChatCompletionChunk {
pub id : String ,
pub object : String ,
2024-01-26 08:07:31 -07:00
#[ schema(example = " 1706270978 " ) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub created : u64 ,
2024-01-26 08:07:31 -07:00
#[ schema(example = " mistralai/Mistral-7B-Instruct-v0.2 " ) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub model : String ,
pub system_fingerprint : String ,
pub choices : Vec < ChatCompletionChoice > ,
}
2024-05-17 03:35:49 -06:00
#[ derive(Clone, Serialize, ToSchema) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub ( crate ) struct ChatCompletionChoice {
pub index : u32 ,
pub delta : ChatCompletionDelta ,
2024-02-08 10:41:25 -07:00
pub logprobs : Option < ChatCompletionLogprobs > ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub finish_reason : Option < String > ,
}
2024-05-16 08:59:05 -06:00
#[ derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq) ]
pub struct ToolCallDelta {
#[ schema(example = " assistant " ) ]
role : String ,
tool_calls : DeltaToolCall ,
}
2024-05-17 03:35:49 -06:00
#[ derive(Clone, Debug, Serialize, ToSchema) ]
#[ serde(untagged) ]
2024-05-16 08:59:05 -06:00
enum ChatCompletionDelta {
Chat ( TextMessage ) ,
Tool ( ToolCallDelta ) ,
2024-02-28 03:10:27 -07:00
}
2024-05-16 08:59:05 -06:00
#[ derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq) ]
2024-02-28 03:10:27 -07:00
pub ( crate ) struct DeltaToolCall {
pub index : u32 ,
pub id : String ,
pub r#type : String ,
pub function : Function ,
}
2024-05-16 08:59:05 -06:00
#[ derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq) ]
2024-02-28 03:10:27 -07:00
pub ( crate ) struct Function {
pub name : Option < String > ,
pub arguments : String ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
}
2024-02-28 03:10:27 -07:00
#[ allow(clippy::too_many_arguments) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
impl ChatCompletionChunk {
pub ( crate ) fn new (
model : String ,
system_fingerprint : String ,
2024-02-28 03:10:27 -07:00
delta : Option < String > ,
tool_calls : Option < Vec < String > > ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
created : u64 ,
2024-02-08 10:41:25 -07:00
logprobs : Option < ChatCompletionLogprobs > ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
finish_reason : Option < String > ,
) -> Self {
2024-04-25 11:41:50 -06:00
let delta = match ( delta , tool_calls ) {
2024-05-16 08:59:05 -06:00
( Some ( delta ) , _ ) = > ChatCompletionDelta ::Chat ( TextMessage {
role : " assistant " . to_string ( ) ,
content : delta ,
} ) ,
( None , Some ( tool_calls ) ) = > ChatCompletionDelta ::Tool ( ToolCallDelta {
role : " assistant " . to_string ( ) ,
tool_calls : DeltaToolCall {
2024-04-25 11:41:50 -06:00
index : 0 ,
id : String ::new ( ) ,
r#type : " function " . to_string ( ) ,
function : Function {
name : None ,
arguments : tool_calls [ 0 ] . to_string ( ) ,
} ,
2024-05-16 08:59:05 -06:00
} ,
} ) ,
( None , None ) = > ChatCompletionDelta ::Chat ( TextMessage {
role : " assistant " . to_string ( ) ,
content : " " . to_string ( ) ,
} ) ,
2024-04-25 11:41:50 -06:00
} ;
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
Self {
id : String ::new ( ) ,
object : " text_completion " . to_string ( ) ,
created ,
model ,
system_fingerprint ,
choices : vec ! [ ChatCompletionChoice {
Fix index in ChatCompletionChunk (#1648)
Fix a small inconsistency compared the OpenAI's chat-completion behavior
(introduced in
https://github.com/huggingface/text-generation-inference/pull/1427 cc
@drbh). When using `stream=True`, each chunk has an `index` value in
`ChatCompletionChoice`. This index is not meant to be the index of the
generated token but the index of the choice, which is always 0 (since
TGI always return a single choice).
See https://platform.openai.com/docs/api-reference/chat/object:
> index _integer_
> The index of the choice in the list of choices.
---
So instead of
```js
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":1,"delta":{"role":"assistant","content":"I"},"logprobs":null,"finish_reason":null}]}
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":2,"delta":{"role":"assistant","content":"'"},"logprobs":null,"finish_reason":null}]}
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":3,"delta":{"role":"assistant","content":"m"},"logprobs":null,"finish_reason":"length"}]}
```
if should return
```js
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":0,"delta":{"role":"assistant","content":"I"},"logprobs":null,"finish_reason":null}]}
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":0,"delta":{"role":"assistant","content":"'"},"logprobs":null,"finish_reason":null}]}
data:{"id":"","object":"text_completion","created":1710508199,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-sha-e6bb3ff","choices":[{"index":0,"delta":{"role":"assistant","content":"m"},"logprobs":null,"finish_reason":"length"}]}
```
**EDIT:** I also edited ToolCall.index to be always `0` (instead of the
generated token index) but for this one I'm actually unsure. It might be
the index of the tool in the array of tools? OpenAI's documentation
doesn't provide any information about it:
> index _integer_
---
I also noticed that in OpenAI's example, the last chunk doesn't have a
delta and is the only one that has a `finish_reason` returning. TGI is
slightly different since the last chunk has both the last delta (i.e.
the last generated token) + the finish reason. I don't think this is
worth fixing since it is not a requirement according to the docs/specs
(at least not that I know of).
2024-03-16 10:14:29 -06:00
index : 0 ,
2024-04-25 11:41:50 -06:00
delta ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
logprobs ,
finish_reason ,
} ] ,
}
}
}
#[ derive(Clone, Deserialize, ToSchema, Serialize) ]
pub ( crate ) struct ChatRequest {
2024-01-26 08:07:31 -07:00
#[ schema(example = " mistralai/Mistral-7B-Instruct-v0.2 " ) ]
2024-02-22 06:56:42 -07:00
/// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
2024-02-08 10:41:25 -07:00
pub model : String ,
2024-02-22 06:56:42 -07:00
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
/// A list of messages comprising the conversation so far.
2024-02-22 06:56:42 -07:00
#[ schema(example = " [{ \" role \" : \" user \" , \" content \" : \" What is Deep Learning? \" }] " ) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub messages : Vec < Message > ,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
/// decreasing the model's likelihood to repeat the same line verbatim.
#[ serde(default) ]
2024-01-26 08:07:31 -07:00
#[ schema(example = " 1.0 " ) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub frequency_penalty : Option < f32 > ,
/// UNUSED
/// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
/// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
/// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
/// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
/// result in a ban or exclusive selection of the relevant token.
#[ serde(default) ]
pub logit_bias : Option < Vec < f32 > > ,
/// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
/// output token returned in the content of message.
#[ serde(default) ]
2024-01-26 08:07:31 -07:00
#[ schema(example = " false " ) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub logprobs : Option < bool > ,
/// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
/// an associated log probability. logprobs must be set to true if this parameter is used.
#[ serde(default) ]
2024-01-26 08:07:31 -07:00
#[ schema(example = " 5 " ) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub top_logprobs : Option < u32 > ,
/// The maximum number of tokens that can be generated in the chat completion.
#[ serde(default) ]
2024-01-26 08:07:31 -07:00
#[ schema(example = " 32 " ) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub max_tokens : Option < u32 > ,
/// UNUSED
/// How many chat completion choices to generate for each input message. Note that you will be charged based on the
/// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
#[ serde(default) ]
2024-01-26 08:07:31 -07:00
#[ schema(nullable = true, example = " 2 " ) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub n : Option < u32 > ,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
/// increasing the model's likelihood to talk about new topics
#[ serde(default) ]
2024-01-26 08:07:31 -07:00
#[ schema(nullable = true, example = 0.1) ]
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub presence_penalty : Option < f32 > ,
2024-03-01 10:08:11 -07:00
/// Up to 4 sequences where the API will stop generating further tokens.
#[ serde(default) ]
#[ schema(nullable = true, example = " null " ) ]
pub stop : Option < Vec < String > > ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
#[ serde(default = " bool::default " ) ]
pub stream : bool ,
#[ schema(nullable = true, example = 42) ]
pub seed : Option < u64 > ,
Disable `decoder_input_details` on OpenAI-compatible chat streaming, pass temp and top-k from API (#1470)
This PR makes some minor tweaks to the new OpenAI-compatible chat
endpoint #1427 in `GenerateParameters`:
- Disables `decoder_input_details` when streaming is enabled. This was
causing all streaming chat requests to fail before, since
[`decoder_input_details`==true is not enabled when streaming
tokens](https://github.com/huggingface/text-generation-inference/blob/98e5faff9daec6170cc2b0f963f2d73cf846b341/router/src/validation.rs#L406).
- Passes through `temperature` and `top_p` hyperparameters from the API
request to `GenerateParameters`
## Testing
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
Should work correctly. Currently, most recent release from `main`
returns error:
```
data:{"error":"Input validation error: `decoder_input_details` == true is not supported when streaming tokens","error_type":"validation"}
```
It's my first time contributing to this project, so I could be missing
something. Would especially appreciate @drbh's eyes on this one
2024-01-23 07:55:05 -07:00
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
/// lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[ serde(default) ]
2024-01-26 08:07:31 -07:00
#[ schema(nullable = true, example = 1.0) ]
Disable `decoder_input_details` on OpenAI-compatible chat streaming, pass temp and top-k from API (#1470)
This PR makes some minor tweaks to the new OpenAI-compatible chat
endpoint #1427 in `GenerateParameters`:
- Disables `decoder_input_details` when streaming is enabled. This was
causing all streaming chat requests to fail before, since
[`decoder_input_details`==true is not enabled when streaming
tokens](https://github.com/huggingface/text-generation-inference/blob/98e5faff9daec6170cc2b0f963f2d73cf846b341/router/src/validation.rs#L406).
- Passes through `temperature` and `top_p` hyperparameters from the API
request to `GenerateParameters`
## Testing
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
Should work correctly. Currently, most recent release from `main`
returns error:
```
data:{"error":"Input validation error: `decoder_input_details` == true is not supported when streaming tokens","error_type":"validation"}
```
It's my first time contributing to this project, so I could be missing
something. Would especially appreciate @drbh's eyes on this one
2024-01-23 07:55:05 -07:00
pub temperature : Option < f32 > ,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
/// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
#[ serde(default) ]
2024-01-26 08:07:31 -07:00
#[ schema(nullable = true, example = 0.95) ]
Disable `decoder_input_details` on OpenAI-compatible chat streaming, pass temp and top-k from API (#1470)
This PR makes some minor tweaks to the new OpenAI-compatible chat
endpoint #1427 in `GenerateParameters`:
- Disables `decoder_input_details` when streaming is enabled. This was
causing all streaming chat requests to fail before, since
[`decoder_input_details`==true is not enabled when streaming
tokens](https://github.com/huggingface/text-generation-inference/blob/98e5faff9daec6170cc2b0f963f2d73cf846b341/router/src/validation.rs#L406).
- Passes through `temperature` and `top_p` hyperparameters from the API
request to `GenerateParameters`
## Testing
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
Should work correctly. Currently, most recent release from `main`
returns error:
```
data:{"error":"Input validation error: `decoder_input_details` == true is not supported when streaming tokens","error_type":"validation"}
```
It's my first time contributing to this project, so I could be missing
something. Would especially appreciate @drbh's eyes on this one
2024-01-23 07:55:05 -07:00
pub top_p : Option < f32 > ,
2024-02-28 03:10:27 -07:00
/// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
/// functions the model may generate JSON inputs for.
#[ serde(default) ]
#[ schema(nullable = true, example = " null " ) ]
pub tools : Option < Vec < Tool > > ,
/// A prompt to be appended before the tools
#[ serde(default = " default_tool_prompt " ) ]
#[ schema(
nullable = true ,
2024-04-16 07:02:46 -06:00
example = " \" You will be presented with a JSON schema representing a set of tools. \n If the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message. \n \n JSON Schema: \n \" "
2024-02-28 03:10:27 -07:00
) ]
pub tool_prompt : Option < String > ,
/// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
#[ serde(default) ]
#[ schema(nullable = true, example = " null " ) ]
#[ serde(deserialize_with = " deserialize_tool_choice::deserialize " ) ]
pub tool_choice : Option < ToolType > ,
}
fn default_tool_prompt ( ) -> Option < String > {
Some (
2024-04-16 07:02:46 -06:00
" \n You will be presented with a JSON schema representing a set of tools. \n If the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message. \n \n JSON Schema: \n " . to_string ( ) ,
2024-02-28 03:10:27 -07:00
)
}
#[ derive(Clone, Deserialize, ToSchema, Serialize) ]
enum ToolType {
FunctionName ( String ) ,
OneOf ,
}
/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
use super ::* ;
use serde ::de ;
use serde ::Deserializer ;
use serde_json ::Value ;
pub fn deserialize < ' de , D > ( deserializer : D ) -> Result < Option < ToolType > , D ::Error >
where
D : Deserializer < ' de > ,
{
let value = Value ::deserialize ( deserializer ) ? ;
match value {
Value ::String ( s ) = > match s . as_str ( ) {
" none " = > Ok ( None ) ,
" auto " = > Ok ( Some ( ToolType ::OneOf ) ) ,
_ = > Ok ( Some ( ToolType ::FunctionName ( s ) ) ) ,
} ,
Value ::Object ( map ) = > {
if let Some ( content ) = map
. get ( " function " )
. and_then ( | v | v . get ( " name " ) )
. and_then ( | v | v . as_str ( ) )
{
Ok ( Some ( ToolType ::FunctionName ( content . to_string ( ) ) ) )
} else {
Err ( de ::Error ::custom ( " function key not found in tool choice " ) )
}
}
Value ::Null = > Ok ( Some ( ToolType ::OneOf ) ) ,
_ = > Err ( de ::Error ::custom ( " invalid token format " ) ) ,
}
}
}
2024-04-16 07:02:46 -06:00
#[ derive(Debug, Deserialize, Serialize, ToSchema, PartialEq) ]
2024-02-28 03:10:27 -07:00
pub struct Tools {
#[ serde(flatten) ]
functions_map : FunctionsMap ,
properties : Properties ,
}
2024-04-16 07:02:46 -06:00
#[ derive(Debug, Serialize, Deserialize, PartialEq) ]
2024-02-28 03:10:27 -07:00
struct FunctionsMap {
#[ serde(rename = " $functions " ) ]
functions : std ::collections ::HashMap < String , serde_json ::Value > ,
}
2024-04-16 07:02:46 -06:00
#[ derive(Debug, Serialize, Deserialize, PartialEq) ]
2024-02-28 03:10:27 -07:00
struct FunctionRef {
#[ serde(rename = " $ref " ) ]
ref_path : String ,
}
2024-04-16 07:02:46 -06:00
#[ derive(Debug, Serialize, Deserialize, PartialEq) ]
2024-02-28 03:10:27 -07:00
struct Properties {
#[ serde(serialize_with = " serialize_function " ) ]
function : Vec < FunctionRef > ,
}
fn serialize_function < S > ( functions : & Vec < FunctionRef > , serializer : S ) -> Result < S ::Ok , S ::Error >
where
S : serde ::Serializer ,
{
use serde ::ser ::SerializeStruct ;
let mut state = serializer . serialize_struct ( " Function " , 1 ) ? ;
state . serialize_field ( " anyOf " , functions ) ? ;
state . end ( )
}
2024-05-16 08:59:05 -06:00
#[ derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq) ]
2024-02-28 03:10:27 -07:00
pub ( crate ) struct FunctionDefinition {
#[ serde(default) ]
pub description : Option < String > ,
pub name : String ,
2024-04-16 07:02:46 -06:00
#[ serde(alias = " parameters " ) ]
pub arguments : serde_json ::Value ,
2024-02-28 03:10:27 -07:00
}
#[ derive(Clone, Debug, Deserialize, Serialize, ToSchema) ]
pub ( crate ) struct Tool {
// The type of the tool. Currently, only 'function' is supported.
#[ schema(example = " function " ) ]
pub r#type : String ,
// Grab the tool as generic JSON for debugging purposes.
pub function : FunctionDefinition ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
}
2024-04-16 07:02:46 -06:00
#[ derive(Clone, Serialize, Deserialize, Default) ]
2024-01-18 04:31:56 -07:00
pub ( crate ) struct ChatTemplateInputs < ' a > {
2024-05-16 08:59:05 -06:00
messages : Vec < TextMessage > ,
2024-01-18 04:31:56 -07:00
bos_token : Option < & ' a str > ,
eos_token : Option < & ' a str > ,
2024-02-07 01:35:53 -07:00
add_generation_prompt : bool ,
2024-04-16 07:02:46 -06:00
tools : Option < & ' a str > ,
tools_prompt : Option < & ' a str > ,
2024-01-18 04:31:56 -07:00
}
2024-05-16 08:59:05 -06:00
#[ derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq) ]
2024-02-28 03:10:27 -07:00
pub ( crate ) struct ToolCall {
2024-05-16 02:17:00 -06:00
pub id : String ,
2024-02-28 03:10:27 -07:00
pub r#type : String ,
pub function : FunctionDefinition ,
}
2024-05-16 08:59:05 -06:00
#[ derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq) ]
struct Url {
url : String ,
Handle images in chat api (#1828)
This PR allows for messages to be formatted as simple strings, or as an
array of objects including image urls. This is done by formatting
content arrays into a simple string.
Example using `llava-hf/llava-v1.6-mistral-7b-hf`
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
}
}
]
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
is equivlant to this more simple request
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "Whats in this image?\n![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)"
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
output
```
# {"id":"","object":"text_completion","created":1714406985,"model":"llava-hf/llava-v1.6-mistral-7b-hf","system_fingerprint":"2.0.1-native","choices":[{"index":0,"message":{"role":"assistant","content":" This is an illustration of an anthropomorphic rabbit in a spacesuit, standing on what"},"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":2945,"completion_tokens":20,"total_tokens":2965}}%
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-04-30 04:18:32 -06:00
}
2024-05-16 08:59:05 -06:00
#[ derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq) ]
struct ImageUrl {
image_url : Url ,
Handle images in chat api (#1828)
This PR allows for messages to be formatted as simple strings, or as an
array of objects including image urls. This is done by formatting
content arrays into a simple string.
Example using `llava-hf/llava-v1.6-mistral-7b-hf`
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
}
}
]
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
is equivlant to this more simple request
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "Whats in this image?\n![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)"
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
output
```
# {"id":"","object":"text_completion","created":1714406985,"model":"llava-hf/llava-v1.6-mistral-7b-hf","system_fingerprint":"2.0.1-native","choices":[{"index":0,"message":{"role":"assistant","content":" This is an illustration of an anthropomorphic rabbit in a spacesuit, standing on what"},"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":2945,"completion_tokens":20,"total_tokens":2965}}%
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-04-30 04:18:32 -06:00
}
2024-05-16 08:59:05 -06:00
#[ derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq) ]
struct Text {
text : String ,
}
#[ derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq) ]
#[ serde(tag = " type " ) ]
#[ serde(rename_all = " snake_case " ) ]
enum MessageChunk {
Text ( Text ) ,
ImageUrl ( ImageUrl ) ,
}
#[ derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq) ]
pub struct Message {
#[ schema(example = " user " ) ]
role : String ,
#[ schema(example = " My name is David and I " ) ]
#[ serde(deserialize_with = " message_content_serde::deserialize " ) ]
content : Vec < MessageChunk > ,
Handle images in chat api (#1828)
This PR allows for messages to be formatted as simple strings, or as an
array of objects including image urls. This is done by formatting
content arrays into a simple string.
Example using `llava-hf/llava-v1.6-mistral-7b-hf`
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
}
}
]
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
is equivlant to this more simple request
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "Whats in this image?\n![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)"
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
output
```
# {"id":"","object":"text_completion","created":1714406985,"model":"llava-hf/llava-v1.6-mistral-7b-hf","system_fingerprint":"2.0.1-native","choices":[{"index":0,"message":{"role":"assistant","content":" This is an illustration of an anthropomorphic rabbit in a spacesuit, standing on what"},"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":2945,"completion_tokens":20,"total_tokens":2965}}%
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-04-30 04:18:32 -06:00
#[ serde(default, skip_serializing_if = " Option::is_none " ) ]
2024-05-16 08:59:05 -06:00
#[ schema(example = " \" David \" " ) ]
name : Option < String > ,
Handle images in chat api (#1828)
This PR allows for messages to be formatted as simple strings, or as an
array of objects including image urls. This is done by formatting
content arrays into a simple string.
Example using `llava-hf/llava-v1.6-mistral-7b-hf`
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
}
}
]
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
is equivlant to this more simple request
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "Whats in this image?\n![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)"
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
output
```
# {"id":"","object":"text_completion","created":1714406985,"model":"llava-hf/llava-v1.6-mistral-7b-hf","system_fingerprint":"2.0.1-native","choices":[{"index":0,"message":{"role":"assistant","content":" This is an illustration of an anthropomorphic rabbit in a spacesuit, standing on what"},"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":2945,"completion_tokens":20,"total_tokens":2965}}%
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-04-30 04:18:32 -06:00
}
mod message_content_serde {
use super ::* ;
2024-05-16 08:59:05 -06:00
use serde ::{ Deserialize , Deserializer } ;
Handle images in chat api (#1828)
This PR allows for messages to be formatted as simple strings, or as an
array of objects including image urls. This is done by formatting
content arrays into a simple string.
Example using `llava-hf/llava-v1.6-mistral-7b-hf`
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
}
}
]
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
is equivlant to this more simple request
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "Whats in this image?\n![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)"
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
output
```
# {"id":"","object":"text_completion","created":1714406985,"model":"llava-hf/llava-v1.6-mistral-7b-hf","system_fingerprint":"2.0.1-native","choices":[{"index":0,"message":{"role":"assistant","content":" This is an illustration of an anthropomorphic rabbit in a spacesuit, standing on what"},"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":2945,"completion_tokens":20,"total_tokens":2965}}%
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-04-30 04:18:32 -06:00
2024-05-16 08:59:05 -06:00
pub fn deserialize < ' de , D > ( deserializer : D ) -> Result < Vec < MessageChunk > , D ::Error >
Handle images in chat api (#1828)
This PR allows for messages to be formatted as simple strings, or as an
array of objects including image urls. This is done by formatting
content arrays into a simple string.
Example using `llava-hf/llava-v1.6-mistral-7b-hf`
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
}
}
]
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
is equivlant to this more simple request
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "Whats in this image?\n![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)"
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
output
```
# {"id":"","object":"text_completion","created":1714406985,"model":"llava-hf/llava-v1.6-mistral-7b-hf","system_fingerprint":"2.0.1-native","choices":[{"index":0,"message":{"role":"assistant","content":" This is an illustration of an anthropomorphic rabbit in a spacesuit, standing on what"},"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":2945,"completion_tokens":20,"total_tokens":2965}}%
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-04-30 04:18:32 -06:00
where
D : Deserializer < ' de > ,
{
2024-05-16 08:59:05 -06:00
#[ derive(Deserialize) ]
#[ serde(untagged) ]
enum Message {
Text ( String ) ,
Chunks ( Vec < MessageChunk > ) ,
Handle images in chat api (#1828)
This PR allows for messages to be formatted as simple strings, or as an
array of objects including image urls. This is done by formatting
content arrays into a simple string.
Example using `llava-hf/llava-v1.6-mistral-7b-hf`
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
}
}
]
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
is equivlant to this more simple request
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "Whats in this image?\n![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)"
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
output
```
# {"id":"","object":"text_completion","created":1714406985,"model":"llava-hf/llava-v1.6-mistral-7b-hf","system_fingerprint":"2.0.1-native","choices":[{"index":0,"message":{"role":"assistant","content":" This is an illustration of an anthropomorphic rabbit in a spacesuit, standing on what"},"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":2945,"completion_tokens":20,"total_tokens":2965}}%
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-04-30 04:18:32 -06:00
}
2024-05-16 08:59:05 -06:00
let message : Message = Deserialize ::deserialize ( deserializer ) ? ;
let chunks = match message {
Message ::Text ( text ) = > {
vec! [ MessageChunk ::Text ( Text { text } ) ]
}
Message ::Chunks ( s ) = > s ,
} ;
Ok ( chunks )
Handle images in chat api (#1828)
This PR allows for messages to be formatted as simple strings, or as an
array of objects including image urls. This is done by formatting
content arrays into a simple string.
Example using `llava-hf/llava-v1.6-mistral-7b-hf`
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
}
}
]
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
is equivlant to this more simple request
```bash
curl localhost: 3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "Whats in this image?\n![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)"
}
],
"stream": false,
"max_tokens": 20,
"seed": 42
}'
```
output
```
# {"id":"","object":"text_completion","created":1714406985,"model":"llava-hf/llava-v1.6-mistral-7b-hf","system_fingerprint":"2.0.1-native","choices":[{"index":0,"message":{"role":"assistant","content":" This is an illustration of an anthropomorphic rabbit in a spacesuit, standing on what"},"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":2945,"completion_tokens":20,"total_tokens":2965}}%
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-04-30 04:18:32 -06:00
}
}
2024-05-16 08:59:05 -06:00
#[ derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq) ]
pub struct TextMessage {
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
#[ schema(example = " user " ) ]
pub role : String ,
#[ schema(example = " My name is David and I " ) ]
2024-05-16 08:59:05 -06:00
pub content : String ,
}
impl From < Message > for TextMessage {
fn from ( value : Message ) -> Self {
TextMessage {
role : value . role ,
content : value
. content
. into_iter ( )
. map ( | c | match c {
MessageChunk ::Text ( Text { text } ) = > text ,
MessageChunk ::ImageUrl ( image ) = > {
let url = image . image_url . url ;
format! ( " ![]( {url} ) " )
}
} )
. collect ::< Vec < _ > > ( )
. join ( " " ) ,
}
}
}
#[ derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq) ]
pub struct ToolCallMessage {
#[ schema(example = " assistant " ) ]
role : String ,
tool_calls : Vec < ToolCall > ,
}
#[ derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq) ]
#[ serde(untagged) ]
pub ( crate ) enum OutputMessage {
ChatMessage ( TextMessage ) ,
ToolCall ( ToolCallMessage ) ,
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
}
2023-02-03 04:43:37 -07:00
#[ derive(Clone, Debug, Deserialize, ToSchema) ]
2022-10-18 07:19:03 -06:00
pub ( crate ) struct GenerateRequest {
2023-02-03 04:43:37 -07:00
#[ schema(example = " My name is Olivier and I " ) ]
2022-10-18 07:19:03 -06:00
pub inputs : String ,
#[ serde(default = " default_parameters " ) ]
pub parameters : GenerateParameters ,
}
2023-02-27 06:56:58 -07:00
#[ derive(Clone, Debug, Deserialize, ToSchema) ]
pub ( crate ) struct CompatGenerateRequest {
#[ schema(example = " My name is Olivier and I " ) ]
pub inputs : String ,
#[ serde(default = " default_parameters " ) ]
pub parameters : GenerateParameters ,
#[ serde(default) ]
2023-06-05 10:16:08 -06:00
#[ schema(default = " false " ) ]
2023-02-27 06:56:58 -07:00
pub stream : bool ,
}
impl From < CompatGenerateRequest > for GenerateRequest {
fn from ( req : CompatGenerateRequest ) -> Self {
Self {
inputs : req . inputs ,
parameters : req . parameters ,
}
}
}
2023-02-24 07:55:57 -07:00
#[ derive(Debug, Serialize, ToSchema) ]
pub struct PrefillToken {
#[ schema(example = 0) ]
id : u32 ,
#[ schema(example = " test " ) ]
text : String ,
2023-02-27 06:56:58 -07:00
#[ schema(nullable = true, example = - 0.34) ]
2023-02-24 07:55:57 -07:00
logprob : f32 ,
}
2024-02-08 10:41:25 -07:00
#[ derive(Debug, Serialize, ToSchema, Clone) ]
2023-02-03 04:43:37 -07:00
pub struct Token {
#[ schema(example = 0) ]
id : u32 ,
#[ schema(example = " test " ) ]
text : String ,
2023-02-27 06:56:58 -07:00
#[ schema(nullable = true, example = - 0.34) ]
2023-02-03 04:43:37 -07:00
logprob : f32 ,
2023-02-24 07:55:57 -07:00
#[ schema(example = " false " ) ]
special : bool ,
2023-02-03 04:43:37 -07:00
}
Add a new `/tokenize` route to get the tokenized input (#1471)
# What does this PR do?
Ideally this is done client side, but this is a recurring request,
therefore we implemented it.
- Runs only if rust tokenizer is present (not encumbering the main
inference pipeline is important).
- Returns simple results, ID, text (gotten with offsets from the
original string) and offsets (so users can do things like highlighting
text).
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2024-01-25 06:19:03 -07:00
#[ derive(Debug, Serialize, ToSchema) ]
pub struct SimpleToken {
#[ schema(example = 0) ]
id : u32 ,
#[ schema(example = " test " ) ]
text : String ,
#[ schema(example = 0) ]
start : usize ,
#[ schema(example = 2) ]
stop : usize ,
}
2023-02-03 04:43:37 -07:00
#[ derive(Serialize, ToSchema) ]
#[ serde(rename_all(serialize = " snake_case " )) ]
2024-01-26 08:07:31 -07:00
#[ schema(example = " Length " ) ]
2023-02-03 04:43:37 -07:00
pub ( crate ) enum FinishReason {
#[ schema(rename = " length " ) ]
Length ,
#[ serde(rename = " eos_token " ) ]
#[ schema(rename = " eos_token " ) ]
EndOfSequenceToken ,
#[ schema(rename = " stop_sequence " ) ]
StopSequence ,
}
2023-01-31 09:04:00 -07:00
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
impl std ::fmt ::Display for FinishReason {
fn fmt ( & self , f : & mut std ::fmt ::Formatter < '_ > ) -> std ::fmt ::Result {
match self {
FinishReason ::Length = > write! ( f , " length " ) ,
FinishReason ::EndOfSequenceToken = > write! ( f , " eos_token " ) ,
FinishReason ::StopSequence = > write! ( f , " stop_sequence " ) ,
}
}
}
2023-03-09 07:30:54 -07:00
#[ derive(Serialize, ToSchema) ]
pub ( crate ) struct BestOfSequence {
#[ schema(example = " test " ) ]
pub generated_text : String ,
#[ schema(example = " length " ) ]
pub finish_reason : FinishReason ,
#[ schema(example = 1) ]
pub generated_tokens : u32 ,
#[ schema(nullable = true, example = 42) ]
pub seed : Option < u64 > ,
pub prefill : Vec < PrefillToken > ,
pub tokens : Vec < Token > ,
2023-08-28 03:43:47 -06:00
#[ serde(skip_serializing_if = " Vec::is_empty " ) ]
pub top_tokens : Vec < Vec < Token > > ,
2023-03-09 07:30:54 -07:00
}
2023-02-03 04:43:37 -07:00
#[ derive(Serialize, ToSchema) ]
2022-12-15 09:03:56 -07:00
pub ( crate ) struct Details {
2023-02-03 04:43:37 -07:00
#[ schema(example = " length " ) ]
pub finish_reason : FinishReason ,
#[ schema(example = 1) ]
2022-12-15 09:03:56 -07:00
pub generated_tokens : u32 ,
2023-03-09 07:30:54 -07:00
#[ schema(nullable = true, example = 42) ]
2023-01-30 07:36:16 -07:00
pub seed : Option < u64 > ,
2023-03-07 10:52:22 -07:00
pub prefill : Vec < PrefillToken > ,
pub tokens : Vec < Token > ,
2023-03-09 07:30:54 -07:00
#[ serde(skip_serializing_if = " Option::is_none " ) ]
pub best_of_sequences : Option < Vec < BestOfSequence > > ,
2023-08-28 03:43:47 -06:00
#[ serde(skip_serializing_if = " Vec::is_empty " ) ]
pub top_tokens : Vec < Vec < Token > > ,
2022-12-15 09:03:56 -07:00
}
2023-02-03 04:43:37 -07:00
#[ derive(Serialize, ToSchema) ]
2023-01-31 09:04:00 -07:00
pub ( crate ) struct GenerateResponse {
2023-02-03 04:43:37 -07:00
#[ schema(example = " test " ) ]
2022-10-18 07:19:03 -06:00
pub generated_text : String ,
2022-12-15 09:03:56 -07:00
#[ serde(skip_serializing_if = " Option::is_none " ) ]
pub details : Option < Details > ,
2022-10-18 07:19:03 -06:00
}
2022-10-27 06:25:29 -06:00
2024-01-26 08:07:31 -07:00
#[ derive(Serialize, ToSchema) ]
#[ serde(transparent) ]
pub ( crate ) struct TokenizeResponse ( Vec < SimpleToken > ) ;
2023-02-03 04:43:37 -07:00
#[ derive(Serialize, ToSchema) ]
pub ( crate ) struct StreamDetails {
#[ schema(example = " length " ) ]
pub finish_reason : FinishReason ,
#[ schema(example = 1) ]
pub generated_tokens : u32 ,
2023-03-09 07:30:54 -07:00
#[ schema(nullable = true, example = 42) ]
2023-02-03 04:43:37 -07:00
pub seed : Option < u64 > ,
}
#[ derive(Serialize, ToSchema) ]
2023-01-31 09:04:00 -07:00
pub ( crate ) struct StreamResponse {
feat: supports openai chat completions API (#1427)
This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.
Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)
General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning
# How to test
### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
It is also possible to use the `openai` python library and change the
base url
### 🌊 STREAMING REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```
### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="not needed for a local LLM"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```
## How to run dev
```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```
***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```
trigger
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
-H 'Content-Type: application/json'
```
^ supports `stream: true` and `stream: false` requests
2024-01-16 03:07:41 -07:00
pub index : u32 ,
2023-01-31 09:04:00 -07:00
pub token : Token ,
2023-08-28 03:43:47 -06:00
#[ serde(skip_serializing_if = " Vec::is_empty " ) ]
pub top_tokens : Vec < Token > ,
2023-02-03 04:43:37 -07:00
#[ schema(nullable = true, default = " null " , example = " test " ) ]
2023-01-31 09:04:00 -07:00
pub generated_text : Option < String > ,
2023-02-03 04:43:37 -07:00
#[ schema(nullable = true, default = " null " ) ]
pub details : Option < StreamDetails > ,
2023-01-31 09:04:00 -07:00
}
2023-02-03 04:43:37 -07:00
#[ derive(Serialize, ToSchema) ]
2022-10-27 06:25:29 -06:00
pub ( crate ) struct ErrorResponse {
pub error : String ,
2023-03-07 10:52:22 -07:00
pub error_type : String ,
2022-10-27 06:25:29 -06:00
}
2023-04-26 08:14:40 -06:00
#[ cfg(test) ]
2023-04-26 12:23:54 -06:00
mod tests {
2024-02-13 08:01:02 -07:00
use super ::* ;
2024-05-16 08:59:05 -06:00
use serde_json ::json ;
2023-04-26 08:14:40 -06:00
use tokenizers ::Tokenizer ;
2023-04-26 12:23:54 -06:00
pub ( crate ) async fn get_tokenizer ( ) -> Tokenizer {
2024-01-26 06:06:27 -07:00
let api = hf_hub ::api ::sync ::Api ::new ( ) . unwrap ( ) ;
let repo = api . model ( " gpt2 " . to_string ( ) ) ;
let filename = repo . get ( " tokenizer.json " ) . unwrap ( ) ;
Tokenizer ::from_file ( filename ) . unwrap ( )
2023-04-26 08:14:40 -06:00
}
2024-02-13 08:01:02 -07:00
#[ test ]
fn test_hub_nested_tokens_tokenizer_config ( ) {
// this is a subset of the tokenizer.json file
// in this case we expect the tokens to be encoded as simple strings
let json_content = r #" {
" chat_template " : " test " ,
" bos_token " : " <| begin▁of▁sentence| > " ,
" eos_token " : " <| end▁of▁sentence| > "
} " #;
let config : HubTokenizerConfig = serde_json ::from_str ( json_content ) . unwrap ( ) ;
// check that we successfully parsed the tokens
2024-04-10 09:20:25 -06:00
assert_eq! (
config . chat_template ,
Some ( ChatTemplateVersions ::Single ( " test " . to_string ( ) ) )
) ;
2024-02-13 08:01:02 -07:00
assert_eq! (
config . bos_token ,
Some ( " <| begin▁of▁sentence| > " . to_string ( ) )
) ;
assert_eq! ( config . eos_token , Some ( " <| end▁of▁sentence| > " . to_string ( ) ) ) ;
// in this case we expect the tokens to be encoded as structured tokens
// we want the content of the structured token
let json_content = r #" {
" chat_template " : " test " ,
" bos_token " : {
" __type " : " AddedToken " ,
" content " : " <| begin▁of▁sentence| > " ,
" lstrip " : false ,
" normalized " : true ,
" rstrip " : false ,
" single_word " : false
} ,
" eos_token " : {
" __type " : " AddedToken " ,
" content " : " <| end▁of▁sentence| > " ,
" lstrip " : false ,
" normalized " : true ,
" rstrip " : false ,
" single_word " : false
}
} " #;
let config : HubTokenizerConfig = serde_json ::from_str ( json_content ) . unwrap ( ) ;
// check that we successfully parsed the tokens
2024-04-10 09:20:25 -06:00
assert_eq! (
config . chat_template ,
Some ( ChatTemplateVersions ::Single ( " test " . to_string ( ) ) )
) ;
2024-02-13 08:01:02 -07:00
assert_eq! (
config . bos_token ,
Some ( " <| begin▁of▁sentence| > " . to_string ( ) )
) ;
assert_eq! ( config . eos_token , Some ( " <| end▁of▁sentence| > " . to_string ( ) ) ) ;
}
2024-05-16 08:59:05 -06:00
#[ test ]
fn test_chat_simple_string ( ) {
2024-05-16 09:21:00 -06:00
let json = json! ( {
2024-05-16 08:59:05 -06:00
" model " : " " ,
2024-05-16 09:21:00 -06:00
" messages " : [ {
" role " : " user " ,
2024-05-16 08:59:05 -06:00
" content " : " What is Deep Learning? "
2024-05-16 09:21:00 -06:00
} ]
2024-05-16 08:59:05 -06:00
} ) ;
let request : ChatRequest = serde_json ::from_str ( json . to_string ( ) . as_str ( ) ) . unwrap ( ) ;
assert_eq! (
request . messages [ 0 ] ,
Message {
role : " user " . to_string ( ) ,
content : vec ! [ MessageChunk ::Text ( Text {
text : " What is Deep Learning? " . to_string ( )
} ) , ] ,
name : None
}
) ;
}
#[ test ]
fn test_chat_request ( ) {
2024-05-16 09:21:00 -06:00
let json = json! ( {
2024-05-16 08:59:05 -06:00
" model " : " " ,
2024-05-16 09:21:00 -06:00
" messages " : [ {
" role " : " user " ,
2024-05-16 08:59:05 -06:00
" content " : [
{ " type " : " text " , " text " : " Whats in this image? " } ,
2024-05-16 09:21:00 -06:00
{ " type " : " image_url " , " image_url " : { " url " : " https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png " } } ,
2024-05-16 08:59:05 -06:00
]
2024-05-16 09:21:00 -06:00
} ]
2024-05-16 08:59:05 -06:00
} ) ;
let request : ChatRequest = serde_json ::from_str ( json . to_string ( ) . as_str ( ) ) . unwrap ( ) ;
assert_eq! (
request . messages [ 0 ] ,
Message {
role : " user " . to_string ( ) ,
content : vec ! [
MessageChunk ::Text ( Text { text : " Whats in this image? " . to_string ( ) } ) ,
MessageChunk ::ImageUrl ( ImageUrl { image_url : Url { url : " https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png " . to_string ( ) } } )
] ,
name : None
}
) ;
}
2024-05-16 09:21:00 -06:00
#[ test ]
fn text_message_convert ( ) {
let message = Message {
role : " user " . to_string ( ) ,
content : vec ! [
MessageChunk ::Text ( Text { text : " Whats in this image? " . to_string ( ) } ) ,
MessageChunk ::ImageUrl ( ImageUrl { image_url : Url { url : " https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png " . to_string ( ) } } )
] ,
name : None
} ;
let textmsg : TextMessage = message . into ( ) ;
assert_eq! ( textmsg . content , " Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png) " ) ;
}
#[ test ]
fn openai_output ( ) {
let message = OutputMessage ::ChatMessage ( TextMessage {
role : " assistant " . to_string ( ) ,
content : " This is the answer " . to_string ( ) ,
} ) ;
let serialized = serde_json ::to_string ( & message ) . unwrap ( ) ;
assert_eq! (
serialized ,
r # "{"role":"assistant","content":"This is the answer"}"#
) ;
let message = OutputMessage ::ToolCall ( ToolCallMessage {
role : " assistant " . to_string ( ) ,
tool_calls : vec ! [ ToolCall {
id : " 0 " . to_string ( ) ,
r#type : " function " . to_string ( ) ,
function : FunctionDefinition {
description : None ,
name : " myfn " . to_string ( ) ,
arguments : json ! ( {
" format " : " csv "
} ) ,
} ,
} ] ,
} ) ;
let serialized = serde_json ::to_string ( & message ) . unwrap ( ) ;
assert_eq! (
serialized ,
r # "{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
) ;
}
2023-04-26 08:14:40 -06:00
}