More tests.
This commit is contained in:
parent
1352f70847
commit
13e6d522b7
|
@ -0,0 +1,94 @@
|
|||
import { check } from 'k6';
|
||||
import { scenario } from 'k6/execution';
|
||||
import http from 'k6/http';
|
||||
import { Trend, Counter } from 'k6/metrics';
|
||||
|
||||
const host = __ENV.HOST;
|
||||
const model_id = __ENV.MODEL_ID;
|
||||
const timePerToken = new Trend('time_per_token', true);
|
||||
const tokens = new Counter('tokens');
|
||||
const new_tokens = new Counter('new_tokens');
|
||||
const input_tokens = new Counter('input_tokens');
|
||||
const max_new_tokens = 50;
|
||||
|
||||
// const shareGPT = JSON.parse(open("ShareGPT_V3_unfiltered_cleaned_split.json"))
|
||||
const shareGPT = JSON.parse(open("long.json"))
|
||||
|
||||
|
||||
export function get_options() {
|
||||
return {
|
||||
thresholds: {
|
||||
http_req_failed: ['rate==0'],
|
||||
// time_per_token: [{
|
||||
// threshold: `p(50)<${5 * reference_latency_ms}`,
|
||||
// abortOnFail: true,
|
||||
// delayAbortEval: '10s'
|
||||
// }],
|
||||
},
|
||||
scenarios: {
|
||||
// single_user: {
|
||||
// executor: 'constant-arrival-rate',
|
||||
// duration: '60s',
|
||||
// preAllocatedVUs: 1,
|
||||
// rate: 20,
|
||||
// timeUnit: '1s',
|
||||
// },
|
||||
// load_test: {
|
||||
// executor: 'constant-arrival-rate',
|
||||
// duration: '60s',
|
||||
// preAllocatedVUs: 100,
|
||||
// rate: 1,
|
||||
// timeUnit: '1s',
|
||||
// },
|
||||
// breakpoint: {
|
||||
// executor: 'ramping-arrival-rate', //Assure load increase if the system slows
|
||||
// preAllocatedVUs: 300,
|
||||
// stages: [
|
||||
// { duration: '60s', target: 100 }, // just slowly ramp-up to a HUGE load
|
||||
// ],
|
||||
// },
|
||||
throughput: {
|
||||
executor: 'shared-iterations',
|
||||
vus: 10,
|
||||
iterations: 10,
|
||||
maxDuration: '120s',
|
||||
},
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
function generate_payload(gpt, max_new_tokens) {
|
||||
const input = gpt["conversations"][0]["value"];
|
||||
return { "messages": [{ "role": "user", "content": input }], "temperature": 0, "model": `${model_id}`, "max_tokens": max_new_tokens }
|
||||
}
|
||||
|
||||
export const options = get_options();
|
||||
|
||||
export default function run() {
|
||||
const headers = { 'Content-Type': 'application/json' };
|
||||
const query = shareGPT[scenario.iterationInTest % shareGPT.length];
|
||||
const payload = JSON.stringify(generate_payload(query, max_new_tokens));
|
||||
const res = http.post(`http://${host}/v1/chat/completions`, payload, {
|
||||
headers,
|
||||
});
|
||||
if (res.status >= 400 && res.status < 500) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
check(res, {
|
||||
'Post status is 200': (res) => res.status === 200,
|
||||
});
|
||||
const duration = res.timings.duration;
|
||||
|
||||
if (res.status === 200) {
|
||||
const body = res.json();
|
||||
const completion_tokens = body.usage.completion_tokens;
|
||||
const latency_ms_per_token = duration / completion_tokens;
|
||||
timePerToken.add(latency_ms_per_token);
|
||||
const prompt_tokens = body.usage.prompt_tokens;
|
||||
input_tokens.add(prompt_tokens);
|
||||
new_tokens.add(completion_tokens);
|
||||
tokens.add(completion_tokens + prompt_tokens);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,19 @@
|
|||
import datasets
|
||||
import json
|
||||
|
||||
|
||||
dataset = datasets.load_dataset("ccdv/govreport-summarization")
|
||||
max_new_tokens = 50
|
||||
|
||||
|
||||
conversations = []
|
||||
|
||||
for i, item in enumerate(dataset["test"]):
|
||||
report = item["report"]
|
||||
|
||||
messages = [{"from": "human", "value": f"Summarize this report: ```{report}```"}]
|
||||
|
||||
conversations.append({"conversations": messages})
|
||||
|
||||
with open("long.json", "w") as f:
|
||||
json.dump(conversations, f, indent=4)
|
|
@ -0,0 +1,22 @@
|
|||
# https://www.gutenberg.org/cache/epub/103/pg103.txt
|
||||
from openai import OpenAI
|
||||
import os
|
||||
import requests
|
||||
|
||||
if not os.path.exists("pg103.txt"):
|
||||
response = requests.get("https://www.gutenberg.org/cache/epub/103/pg103.txt")
|
||||
with open("pg103.txt", "w") as f:
|
||||
f.write(response.text)
|
||||
|
||||
|
||||
length = 130000
|
||||
with open("pg103.txt", "r") as f:
|
||||
data = f.read()
|
||||
|
||||
messages = [{"role": "user", "content": data[: length * 4]}]
|
||||
|
||||
client = OpenAI(base_url="http://localhost:8000/v1", api_key="w")
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="meta-llama/Llama-3.1-8B-Instruct", messages=messages, max_tokens=2
|
||||
)
|
Loading…
Reference in New Issue