feat(server): Support generic AutoModelForCausalLM
This commit is contained in:
parent
755fc0e403
commit
c5665f5c8b
|
@ -18,6 +18,7 @@ A Rust and gRPC server for text generation inference.
|
|||
## Supported models
|
||||
|
||||
- BLOOM
|
||||
- BLOOMZ
|
||||
- BLOOM-560m
|
||||
|
||||
## Load Tests for BLOOM
|
||||
|
|
|
@ -63,6 +63,8 @@ message GeneratedText {
|
|||
Request request = 1;
|
||||
/// Output
|
||||
string output = 2;
|
||||
/// Number of generated tokens
|
||||
uint32 tokens = 3;
|
||||
}
|
||||
|
||||
message GenerateRequest {
|
||||
|
|
|
@ -190,6 +190,7 @@ fn send_generated(finished: Vec<GeneratedText>, db: &Db) {
|
|||
.expect("ID not found in db. This is a bug.");
|
||||
let response = InferResponse {
|
||||
output: output.output,
|
||||
tokens: output.tokens,
|
||||
queued: entry.time,
|
||||
start: entry.batch_time.unwrap(), // unwrap is always valid
|
||||
end: Instant::now(),
|
||||
|
@ -202,6 +203,7 @@ fn send_generated(finished: Vec<GeneratedText>, db: &Db) {
|
|||
#[derive(Debug)]
|
||||
pub(crate) struct InferResponse {
|
||||
pub(crate) output: String,
|
||||
pub(crate) tokens: u32,
|
||||
pub(crate) queued: Instant,
|
||||
pub(crate) start: Instant,
|
||||
pub(crate) end: Instant,
|
||||
|
|
|
@ -116,7 +116,7 @@ async fn generate(
|
|||
let validation_time = response.queued - start_time;
|
||||
let queue_time = response.start - response.queued;
|
||||
let inference_time = response.end - response.start;
|
||||
let time_per_token = inference_time / req.parameters.max_new_tokens;
|
||||
let time_per_token = inference_time / response.tokens;
|
||||
|
||||
// Headers
|
||||
let mut headers = HeaderMap::new();
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
from text_generation.models.model import Model
|
||||
from text_generation.models.bloom import BLOOM, BLOOMSharded
|
||||
from text_generation.models.bloom import BLOOMSharded
|
||||
from text_generation.models.causal_lm import CausalLM
|
||||
|
||||
__all__ = ["Model", "BLOOM", "BLOOMSharded"]
|
||||
__all__ = ["Model", "BLOOMSharded", "CausalLM"]
|
||||
|
||||
|
||||
def get_model(model_name: str, sharded: bool, quantize: bool) -> Model:
|
||||
|
@ -11,6 +12,10 @@ def get_model(model_name: str, sharded: bool, quantize: bool) -> Model:
|
|||
else:
|
||||
if quantize:
|
||||
raise ValueError("quantization is not supported for non-sharded BLOOM")
|
||||
return BLOOM(model_name)
|
||||
return CausalLM(model_name)
|
||||
else:
|
||||
raise ValueError(f"model {model_name} is not supported yet")
|
||||
if sharded:
|
||||
raise ValueError("sharded is not supported for AutoModel")
|
||||
if quantize:
|
||||
raise ValueError("quantize is not supported for AutoModel")
|
||||
return CausalLM(model_name)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from typing import List, Optional, Tuple, Type
|
||||
from typing import List, Optional
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from safetensors import safe_open
|
||||
|
@ -11,10 +11,8 @@ from transformers.models.bloom.parallel_layers import (
|
|||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from text_generation.models import Model
|
||||
from text_generation.models.types import Batch, GeneratedText
|
||||
from text_generation.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
|
@ -31,322 +29,26 @@ except Exception as e:
|
|||
torch.manual_seed(0)
|
||||
|
||||
|
||||
class BloomBatch(Batch):
|
||||
@classmethod
|
||||
def concatenate(cls, batches: List["Batch"]) -> "BloomBatch":
|
||||
# Used for padding
|
||||
total_batch_size = sum(batch.size for batch in batches)
|
||||
max_sequence_length = max(batch.max_sequence_length for batch in batches)
|
||||
|
||||
# Batch attributes
|
||||
input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
|
||||
requests = []
|
||||
all_input_lengths = []
|
||||
all_input_ids = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Used for slicing correctly inside the tensors
|
||||
# Equivalent to a cumsum on batch sizes
|
||||
start_index = 0
|
||||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
all_input_lengths.extend(batch.all_input_lengths)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
# Slicing end index for this batch
|
||||
end_index = start_index + batch.size
|
||||
|
||||
# We only concatenate batches that did at least one step
|
||||
if batch.input_ids["input_ids"].shape[1] > 1:
|
||||
raise ValueError("Batch input_ids should be of shape (batch_size, 1)")
|
||||
|
||||
# Initialize tensors
|
||||
if i == 0:
|
||||
input_ids["input_ids"] = torch.empty(
|
||||
(total_batch_size, 1),
|
||||
dtype=batch.input_ids["input_ids"].dtype,
|
||||
device=batch.input_ids["input_ids"].device,
|
||||
)
|
||||
input_ids["attention_mask"] = torch.zeros(
|
||||
(total_batch_size, max_sequence_length),
|
||||
dtype=batch.input_ids["attention_mask"].dtype,
|
||||
device=batch.input_ids["attention_mask"].device,
|
||||
)
|
||||
|
||||
# input_ids["input_ids"] is always of shape [batch_size, 1]
|
||||
# We do not need to pad it
|
||||
input_ids["input_ids"][start_index:end_index] = batch.input_ids["input_ids"]
|
||||
|
||||
# We need to slice the attention mask to remove padding from previous steps
|
||||
input_ids["attention_mask"][
|
||||
start_index:end_index, -batch.max_sequence_length:
|
||||
] = batch.input_ids["attention_mask"][:, -batch.max_sequence_length:]
|
||||
|
||||
for j, past in enumerate(batch.input_ids["past_key_values"]):
|
||||
past_keys = past[0]
|
||||
past_values = past[1]
|
||||
|
||||
_, head_dim, padded_sequence_length = past_keys.shape
|
||||
|
||||
# Reshape the tensors to make slicing easier
|
||||
past_keys = past_keys.view(
|
||||
batch.size, -1, head_dim, padded_sequence_length
|
||||
)
|
||||
past_values = past_values.view(
|
||||
batch.size, -1, padded_sequence_length, head_dim
|
||||
)
|
||||
num_heads = past_keys.shape[1]
|
||||
|
||||
# Initialize tensors
|
||||
# This will run only once per layer
|
||||
if j == len(input_ids["past_key_values"]):
|
||||
padded_past_keys = torch.zeros(
|
||||
(
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
head_dim,
|
||||
max_sequence_length - 1,
|
||||
),
|
||||
dtype=past_keys.dtype,
|
||||
device=past_keys.device,
|
||||
)
|
||||
padded_past_values = torch.zeros(
|
||||
(
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
max_sequence_length - 1,
|
||||
head_dim,
|
||||
),
|
||||
dtype=past_values.dtype,
|
||||
device=past_values.device,
|
||||
)
|
||||
input_ids["past_key_values"].append(
|
||||
[padded_past_keys, padded_past_values]
|
||||
)
|
||||
|
||||
# We slice the past keys and values to remove the padding from previous batches
|
||||
input_ids["past_key_values"][j][0][
|
||||
start_index:end_index, :, :, -(batch.max_sequence_length - 1):
|
||||
] = past_keys[:, :, :, -(batch.max_sequence_length - 1):]
|
||||
|
||||
input_ids["past_key_values"][j][1][
|
||||
start_index:end_index, :, -(batch.max_sequence_length - 1):, :
|
||||
] = past_values[:, :, -(batch.max_sequence_length - 1):, :]
|
||||
|
||||
# If we are on the last batch, we need to reshape the tensors
|
||||
if (i + 1) == len(batches):
|
||||
input_ids["past_key_values"][j][0] = input_ids["past_key_values"][
|
||||
j
|
||||
][0].view(total_batch_size * num_heads, head_dim, -1)
|
||||
input_ids["past_key_values"][j][1] = input_ids["past_key_values"][
|
||||
j
|
||||
][1].view(total_batch_size * num_heads, -1, head_dim)
|
||||
|
||||
start_index += batch.size
|
||||
|
||||
return cls(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
all_input_lengths=all_input_lengths,
|
||||
input_ids=input_ids,
|
||||
all_input_ids=all_input_ids,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=total_batch_size,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
|
||||
class BLOOM(Model):
|
||||
def __init__(self, model_name: str):
|
||||
if not model_name.startswith("bigscience/bloom"):
|
||||
raise ValueError(f"Model {model_name} is not supported")
|
||||
|
||||
if torch.cuda.is_available():
|
||||
self.device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
self.device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map="auto" if torch.cuda.is_available() else None
|
||||
).eval()
|
||||
|
||||
self.num_heads = self.model.config.num_attention_heads
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[BloomBatch]:
|
||||
return BloomBatch
|
||||
|
||||
def forward(
|
||||
self, input_ids, attention_mask, past_key_values: Optional = None
|
||||
) -> CausalLMOutputWithPast:
|
||||
# Model Forward
|
||||
return self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
def generate_token(
|
||||
self, batch: BloomBatch
|
||||
) -> Tuple[List[GeneratedText], Optional[BloomBatch]]:
|
||||
# For some reason, inference_mode does not work well with GLOO which we use on CPU
|
||||
context_manager = (
|
||||
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
|
||||
)
|
||||
with context_manager():
|
||||
outputs = self.forward(**batch.input_ids)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
next_batch_past_keep_indices = []
|
||||
|
||||
# New input_ids for next forward
|
||||
next_batch_input_ids = []
|
||||
next_batch_all_input_ids = []
|
||||
next_all_input_lengths = []
|
||||
|
||||
next_batch_size = 0
|
||||
next_batch_max_sequence_length = 0
|
||||
|
||||
# Finished requests
|
||||
generated_texts: List[GeneratedText] = []
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.all_input_lengths,
|
||||
outputs.logits,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
logits,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_tokens,
|
||||
) in enumerate(iterator):
|
||||
# Select next token
|
||||
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
|
||||
|
||||
# Append next token to all tokens
|
||||
all_tokens = torch.cat([all_tokens, next_token])
|
||||
|
||||
# Evaluate stopping criteria
|
||||
if stopping_criteria(all_tokens):
|
||||
# Decode all tokens
|
||||
output = self.tokenizer.decode(
|
||||
all_tokens.squeeze(-1), skip_special_tokens=True
|
||||
)
|
||||
# Add to the list of finished generations with the original request
|
||||
generated_texts.append(GeneratedText(request, output))
|
||||
# add to the next batch
|
||||
else:
|
||||
next_batch_keep_indices.append(i)
|
||||
# past_key_values is of shape [batch_size * num_heads, ...]
|
||||
# so we need to take into account the `num_heads` stride here
|
||||
next_batch_past_keep_indices.extend(
|
||||
[j for j in range(i * self.num_heads, (i + 1) * self.num_heads)]
|
||||
)
|
||||
next_batch_input_ids.append(next_token)
|
||||
next_batch_all_input_ids.append(all_tokens)
|
||||
next_batch_size += 1
|
||||
new_input_length = input_length + 1
|
||||
next_all_input_lengths.append(new_input_length)
|
||||
next_batch_max_sequence_length = max(
|
||||
next_batch_max_sequence_length, new_input_length
|
||||
)
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
return generated_texts, None
|
||||
|
||||
# If we finished at least one generation
|
||||
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
|
||||
if generated_texts:
|
||||
# Apply indices to attention mask, past key values and other items that need to be cached
|
||||
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
|
||||
next_batch_keep_indices
|
||||
]
|
||||
next_batch_input_ids["past_key_values"] = [
|
||||
(
|
||||
keys[next_batch_past_keep_indices],
|
||||
values[next_batch_past_keep_indices],
|
||||
)
|
||||
for keys, values in outputs["past_key_values"]
|
||||
]
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
|
||||
next_batch_input_ids["past_key_values"] = outputs["past_key_values"]
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
|
||||
# Update attention_mask with padding as we added a new token to input_ids
|
||||
next_batch_input_ids["attention_mask"] = torch.cat(
|
||||
[
|
||||
next_batch_input_ids["attention_mask"],
|
||||
torch.ones((next_batch_size, 1)).to(self.device),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
next_batch = BloomBatch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
all_input_lengths=next_all_input_lengths,
|
||||
input_ids=next_batch_input_ids,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
size=next_batch_size,
|
||||
max_sequence_length=next_batch_max_sequence_length,
|
||||
)
|
||||
return generated_texts, next_batch
|
||||
|
||||
|
||||
class BLOOMSharded(BLOOM):
|
||||
class BLOOMSharded(Model):
|
||||
def __init__(self, model_name: str, quantize: bool = False):
|
||||
super(Model, self).__init__()
|
||||
if not model_name.startswith("bigscience/bloom"):
|
||||
raise ValueError(f"Model {model_name} is not supported")
|
||||
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
self.device = torch.device(f"cuda:{self.rank}")
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.float16
|
||||
else:
|
||||
self.device = torch.device("cpu")
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_name, slow_but_exact=False, tp_parallel=True
|
||||
)
|
||||
config.pad_token_id = 3
|
||||
self.num_heads = config.n_head // self.process_group.size()
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
|
@ -370,12 +72,14 @@ class BLOOMSharded(BLOOM):
|
|||
model,
|
||||
filenames,
|
||||
quantize=quantize,
|
||||
device=self.device,
|
||||
device=device,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(BLOOMSharded, self).__init__(tokenizer=tokenizer, num_heads=config.n_head // self.process_group.size(),
|
||||
device=device)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
|
@ -526,5 +230,4 @@ class BLOOMSharded(BLOOM):
|
|||
torch.distributed.all_gather(logits, logits_shard, group=self.process_group)
|
||||
logits = torch.cat(logits, dim=1).view(batch_size, 1, vocab_size)
|
||||
|
||||
outputs.logits = logits
|
||||
return outputs
|
||||
return logits, outputs.past_key_values
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
import torch
|
||||
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from typing import Optional, Tuple, List
|
||||
|
||||
from text_generation.models import Model
|
||||
|
||||
|
||||
class CausalLM(Model):
|
||||
def __init__(self, model_name: str):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=dtype,
|
||||
device_map="auto" if torch.cuda.is_available() else None,
|
||||
).eval()
|
||||
|
||||
super(CausalLM, self).__init__(tokenizer=tokenizer, num_heads=self.model.config.num_attention_heads, device=device)
|
||||
|
||||
def forward(
|
||||
self, input_ids, attention_mask, past_key_values: Optional = None
|
||||
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||||
# Model Forward
|
||||
outputs = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
return outputs.logits, outputs.past_key_values
|
|
@ -1,19 +1,139 @@
|
|||
import torch
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Tuple, Optional, TypeVar, Type
|
||||
from typing import List, Tuple, Optional
|
||||
from tokenizers import Tokenizer
|
||||
|
||||
from text_generation.models.types import Batch, GeneratedText
|
||||
|
||||
B = TypeVar("B", bound=Batch)
|
||||
|
||||
|
||||
class Model(ABC):
|
||||
@property
|
||||
@abstractmethod
|
||||
def batch_type(self) -> Type[B]:
|
||||
raise NotImplementedError
|
||||
def __init__(self, tokenizer: Tokenizer, num_heads: int, device: torch.device):
|
||||
self.tokenizer = tokenizer
|
||||
self.num_heads = num_heads
|
||||
self.device = device
|
||||
|
||||
@abstractmethod
|
||||
def generate_token(
|
||||
self, batch: B
|
||||
) -> Tuple[List[GeneratedText], Optional[B]]:
|
||||
def forward(self, input_ids, attention_mask, past_key_values: Optional = None) -> Tuple[torch.Tensor, List[Tuple]]:
|
||||
raise NotImplementedError
|
||||
|
||||
def generate_token(
|
||||
self, batch: Batch
|
||||
) -> Tuple[List[GeneratedText], Optional[Batch]]:
|
||||
# For some reason, inference_mode does not work well with GLOO which we use on CPU
|
||||
context_manager = (
|
||||
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
|
||||
)
|
||||
with context_manager():
|
||||
logits, past = self.forward(**batch.input_ids)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
|
||||
# New input_ids for next forward
|
||||
next_batch_input_ids = []
|
||||
next_batch_all_input_ids = []
|
||||
next_all_input_lengths = []
|
||||
|
||||
next_batch_size = 0
|
||||
next_batch_max_sequence_length = 0
|
||||
|
||||
# Finished requests
|
||||
generated_texts: List[GeneratedText] = []
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.all_input_lengths,
|
||||
logits,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
logits,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_tokens,
|
||||
) in enumerate(iterator):
|
||||
# Select next token
|
||||
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
|
||||
|
||||
# Append next token to all tokens
|
||||
all_tokens = torch.cat([all_tokens, next_token])
|
||||
|
||||
# Evaluate stopping criteria
|
||||
if stopping_criteria(all_tokens):
|
||||
# Decode all tokens
|
||||
output = self.tokenizer.decode(
|
||||
all_tokens.squeeze(-1), skip_special_tokens=True
|
||||
)
|
||||
# Add to the list of finished generations with the original request
|
||||
generated_texts.append(GeneratedText(request, output, stopping_criteria.current_tokens))
|
||||
# add to the next batch
|
||||
else:
|
||||
next_batch_keep_indices.append(i)
|
||||
next_batch_input_ids.append(next_token)
|
||||
next_batch_all_input_ids.append(all_tokens)
|
||||
next_batch_size += 1
|
||||
new_input_length = input_length + 1
|
||||
next_all_input_lengths.append(new_input_length)
|
||||
next_batch_max_sequence_length = max(
|
||||
next_batch_max_sequence_length, new_input_length
|
||||
)
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
return generated_texts, None
|
||||
|
||||
# If we finished at least one generation
|
||||
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
|
||||
if generated_texts:
|
||||
# Apply indices to attention mask, past key values and other items that need to be cached
|
||||
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
|
||||
next_batch_keep_indices
|
||||
]
|
||||
# Force past to be of dim [batch_size, num_heads, ...] for easy indexing
|
||||
next_batch_input_ids["past_key_values"] = [
|
||||
[t.view(-1, self.num_heads, *t.shape[-2:])[next_batch_keep_indices] for t in layer]
|
||||
for layer in past
|
||||
]
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
|
||||
next_batch_input_ids["past_key_values"] = past
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
|
||||
# Update attention_mask with padding as we added a new token to input_ids
|
||||
next_batch_input_ids["attention_mask"] = torch.cat(
|
||||
[
|
||||
next_batch_input_ids["attention_mask"],
|
||||
torch.ones((next_batch_size, 1)).to(self.device),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
next_batch = Batch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
all_input_lengths=next_all_input_lengths,
|
||||
input_ids=next_batch_input_ids,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
size=next_batch_size,
|
||||
max_sequence_length=next_batch_max_sequence_length,
|
||||
)
|
||||
return generated_texts, next_batch
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
import torch
|
||||
|
||||
from abc import abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Dict
|
||||
|
||||
|
@ -51,7 +50,11 @@ class Batch:
|
|||
do_sample=r.parameters.do_sample,
|
||||
)
|
||||
)
|
||||
stopping_criterias.append(StoppingCriteria(max_new_tokens=r.max_new_tokens))
|
||||
stopping_criterias.append(
|
||||
StoppingCriteria(
|
||||
eos_token_id=tokenizer.eos_token_id, max_new_tokens=r.max_new_tokens
|
||||
)
|
||||
)
|
||||
|
||||
input_ids = tokenizer(
|
||||
inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
|
||||
|
@ -71,15 +74,171 @@ class Batch:
|
|||
)
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def concatenate(cls, batches: List["Batch"]) -> "Batch":
|
||||
raise NotImplementedError
|
||||
# Used for padding
|
||||
total_batch_size = sum(batch.size for batch in batches)
|
||||
max_sequence_length = max(batch.max_sequence_length for batch in batches)
|
||||
# Only needed for Seq2SeqLM
|
||||
max_encoded_sequence_length = None
|
||||
|
||||
# Batch attributes
|
||||
input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
|
||||
requests = []
|
||||
all_input_lengths = []
|
||||
all_input_ids = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Used for slicing correctly inside the tensors
|
||||
# Equivalent to a cumsum on batch sizes
|
||||
start_index = 0
|
||||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
all_input_lengths.extend(batch.all_input_lengths)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
# Slicing end index for this batch
|
||||
end_index = start_index + batch.size
|
||||
|
||||
# We only concatenate batches that did at least one step
|
||||
if batch.input_ids["input_ids"].shape[1] > 1:
|
||||
raise ValueError("Batch input_ids should be of shape (batch_size, 1)")
|
||||
|
||||
# Initialize tensors
|
||||
if i == 0:
|
||||
input_ids["input_ids"] = torch.empty(
|
||||
(total_batch_size, 1),
|
||||
dtype=batch.input_ids["input_ids"].dtype,
|
||||
device=batch.input_ids["input_ids"].device,
|
||||
)
|
||||
input_ids["attention_mask"] = torch.zeros(
|
||||
(total_batch_size, max_sequence_length),
|
||||
dtype=batch.input_ids["attention_mask"].dtype,
|
||||
device=batch.input_ids["attention_mask"].device,
|
||||
)
|
||||
|
||||
# input_ids["input_ids"] is always of shape [batch_size, 1]
|
||||
# We do not need to pad it
|
||||
input_ids["input_ids"][start_index:end_index] = batch.input_ids["input_ids"]
|
||||
|
||||
# We need to slice the attention mask to remove padding from previous steps
|
||||
input_ids["attention_mask"][
|
||||
start_index:end_index, -batch.max_sequence_length:
|
||||
] = batch.input_ids["attention_mask"][:, -batch.max_sequence_length:]
|
||||
|
||||
for j, past in enumerate(batch.input_ids["past_key_values"]):
|
||||
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
|
||||
# BLOOM: [batch_size * num_heads, ...] vs [batch_size, num_heads, ...]
|
||||
head_dim, padded_sequence_length = past[0].shape[-2:]
|
||||
num_heads = (
|
||||
past[0]
|
||||
.view(batch.size, -1, head_dim, padded_sequence_length)
|
||||
.shape[1]
|
||||
)
|
||||
|
||||
# This will run only once per layer
|
||||
if j == len(input_ids["past_key_values"]):
|
||||
input_ids["past_key_values"].append([])
|
||||
|
||||
# Decoder past
|
||||
for k, t in enumerate(past[:2]):
|
||||
# Needed because BLOOM past shapes are not the same for keys and values
|
||||
# Keys: [batch_size * num_heads, head_dim, seq_length]
|
||||
# Values: [batch_size * num_heads, seq_length, head_dim]
|
||||
head_dim_last = False
|
||||
if t.shape[-2] == head_dim:
|
||||
t = t.view(
|
||||
batch.size, num_heads, head_dim, padded_sequence_length
|
||||
)
|
||||
padded_t_shape = (
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
head_dim,
|
||||
max_sequence_length - 1,
|
||||
)
|
||||
elif t.shape[-1] == head_dim:
|
||||
head_dim_last = True
|
||||
t = t.view(
|
||||
batch.size, num_heads, padded_sequence_length, head_dim
|
||||
)
|
||||
padded_t_shape = (
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
max_sequence_length - 1,
|
||||
head_dim,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"shape {t.shape} is not valid")
|
||||
|
||||
# Initialize tensors
|
||||
# This will run only once per layer and per past tensor
|
||||
if k == len(input_ids["past_key_values"][j]):
|
||||
input_ids["past_key_values"][j].append(
|
||||
torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
|
||||
)
|
||||
|
||||
# We slice the past keys and values to remove the padding from previous batches
|
||||
if not head_dim_last:
|
||||
input_ids["past_key_values"][j][k][
|
||||
start_index:end_index,
|
||||
:,
|
||||
:,
|
||||
-(batch.max_sequence_length - 1):,
|
||||
] = t[:, :, :, -(batch.max_sequence_length - 1):]
|
||||
else:
|
||||
input_ids["past_key_values"][j][k][
|
||||
start_index:end_index,
|
||||
:,
|
||||
-(batch.max_sequence_length - 1):,
|
||||
:,
|
||||
] = t[:, :, -(batch.max_sequence_length - 1):, :]
|
||||
|
||||
# Seq2SeqLM specific past (encoder past)
|
||||
for k, t in enumerate(past[2:]):
|
||||
if max_encoded_sequence_length is None:
|
||||
max_encoded_sequence_length = max(max(batch.all_input_lengths) for batch in batches)
|
||||
batch_max_encoded_sequence_length = max(batch.all_input_lengths)
|
||||
|
||||
padded_t_shape = (total_batch_size, num_heads, max_encoded_sequence_length, head_dim)
|
||||
|
||||
idx = k + 2
|
||||
|
||||
# Initialize tensors
|
||||
# This will run only once per layer and per past tensor
|
||||
if idx == len(input_ids["past_key_values"][j]):
|
||||
input_ids["past_key_values"][j].append(
|
||||
torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
|
||||
)
|
||||
|
||||
input_ids["past_key_values"][j][idx][
|
||||
start_index:end_index,
|
||||
:,
|
||||
-batch_max_encoded_sequence_length:,
|
||||
:
|
||||
] = t[:, :, -batch_max_encoded_sequence_length:, :]
|
||||
|
||||
start_index += batch.size
|
||||
|
||||
return cls(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
all_input_lengths=all_input_lengths,
|
||||
input_ids=input_ids,
|
||||
all_input_ids=all_input_ids,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=total_batch_size,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class GeneratedText:
|
||||
request: generate_pb2.Request
|
||||
output: str
|
||||
tokens: int
|
||||
|
||||
def to_pb(self) -> generate_pb2.GeneratedText:
|
||||
return generate_pb2.GeneratedText(request=self.request, output=self.output)
|
||||
return generate_pb2.GeneratedText(request=self.request, output=self.output, tokens=self.tokens)
|
||||
|
|
|
@ -27,7 +27,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||
return generate_pb2.ClearCacheResponse()
|
||||
|
||||
async def Generate(self, request, context):
|
||||
batch = self.model.batch_type.from_pb(request.batch, self.model.tokenizer, self.model.device)
|
||||
batch = Batch.from_pb(request.batch, self.model.tokenizer, self.model.device)
|
||||
|
||||
generated_texts, next_batch = self.model.generate_token(batch)
|
||||
self.cache.set(next_batch)
|
||||
|
@ -51,7 +51,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||
batches.append(batch)
|
||||
|
||||
if len(batches) > 1:
|
||||
batch = self.model.batch_type.concatenate(batches)
|
||||
batch = Batch.concatenate(batches)
|
||||
else:
|
||||
batch = batches[0]
|
||||
|
||||
|
|
|
@ -58,7 +58,8 @@ class NextTokenChooser:
|
|||
|
||||
|
||||
class StoppingCriteria:
|
||||
def __init__(self, max_new_tokens=20):
|
||||
def __init__(self, eos_token_id, max_new_tokens=20):
|
||||
self.eos_token_id = eos_token_id
|
||||
self.max_new_tokens = max_new_tokens
|
||||
self.current_tokens = 0
|
||||
|
||||
|
@ -66,6 +67,8 @@ class StoppingCriteria:
|
|||
self.current_tokens += 1
|
||||
if self.current_tokens >= self.max_new_tokens:
|
||||
return True
|
||||
if self.eos_token_id is not None and all_ids[-1] == self.eos_token_id:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
|
@ -124,11 +127,18 @@ def download_weights(model_name, extension=".safetensors"):
|
|||
filenames = weight_hub_files(model_name, extension)
|
||||
|
||||
download_function = partial(
|
||||
hf_hub_download, repo_id=model_name, local_files_only=False
|
||||
hf_hub_download,
|
||||
repo_id=model_name,
|
||||
local_files_only=False,
|
||||
)
|
||||
|
||||
executor = ThreadPoolExecutor(max_workers=5)
|
||||
futures = [executor.submit(download_function, filename=filename) for filename in filenames]
|
||||
files = [file for file in tqdm(concurrent.futures.as_completed(futures), total=len(futures))]
|
||||
futures = [
|
||||
executor.submit(download_function, filename=filename) for filename in filenames
|
||||
]
|
||||
files = [
|
||||
file
|
||||
for file in tqdm(concurrent.futures.as_completed(futures), total=len(futures))
|
||||
]
|
||||
|
||||
return files
|
||||
|
|
Loading…
Reference in New Issue