Commit Graph

921 Commits

Author SHA1 Message Date
drbh 133015f408
fix: prefer original layernorm names for 180B (#2365) 2024-08-06 15:25:30 -04:00
drbh a64d407d64
fix: default num_ln_in_parallel_attn to one if not supplied (#2364) 2024-08-06 13:33:22 -04:00
drbh 1768c00b9f
feat: return the generated text when parsing fails (#2353) 2024-08-06 13:10:19 -04:00
drbh f8a5b381fe
feat: prefer stop over eos_token to align with openai finish_reason (#2344) 2024-08-06 13:09:50 -04:00
drbh e11f5f1c38
feat: implement a templated endpoint for visibility into chat requests (#2333)
* feat: implement a templated endpoint for visibility into chat requests

* feat: improve to tokenize too

* fix: adjust return type

* feat: simplify prepare_chat_input logic and adjust start stop chars
2024-08-06 13:51:32 +02:00
drbh 29b8d19cdf
fix: return the out tensor rather then the functions return value (#2361) 2024-08-06 13:49:53 +02:00
drbh dd47a3dac4
feat: include local lora adapter loading docs (#2359) 2024-08-05 12:36:44 -04:00
drbh 215ed3ad52
fix: attempt forward on flash attn2 to check hardware support (#2335)
* fix: attempt forward on flash attn2 to check hardware support

* fix: warn window_size_left when using flash attn 1

* fix: prefer version check over test op and avoid window_size_left if not flash attn2

* fix: improve condtional and error message

* fix: update sliding window conditional

* fix: simplify changes and revert model changes

* fix: avoid changing conditional

* fix: typo tweak
2024-08-05 09:11:40 -04:00
Daniël de Kok 47447ef017
Unify attention output handling (#2343)
- Always return the hidden states.
- Create the output tensor inside the `attention` and `paged_attention`
  functions.

This removes the difference between how the output is handled between
attention (output parameter) and paged attention (return value). This
also removes the assumption that the attention implementation can
write to an output tensor (in preparation of FlashInfer).
2024-08-01 17:03:28 +02:00
Daniël de Kok 22fb1be588
Fix cache block size for flash decoding (#2351)
* Fix cache block size for flash decoding

This seems to have been accidentally dropped during the TRT-LLM
PR rebase.

* Also run CI on changes to `backends`
2024-08-01 15:38:57 +02:00
Wang, Yi 9ab9937414
enable HuggingFaceM4/idefics-9b in intel gpu (#2338)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-01 11:08:36 +02:00
Erik Kaunismäki 7451041ecd
refactor usage stats (#2339)
* refactor usage stats

* Update docs/source/usage_statistics.md

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* Update router/src/server.rs

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* changes based on feedback

* run python3 udpate_doc.py

* fix pre-commit

* Update router/src/server.rs

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* delete option around usage stats arg

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-07-31 16:29:07 +02:00
drbh f7f61876cf
Pr 2290 ci run (#2329)
* MODEL_ID propagation fix

* fix: remove global model id

---------

Co-authored-by: root <root@tw031.pit.tensorwave.lan>
2024-07-31 10:27:15 -04:00
Daniël de Kok 34f7dcfd80
Handle GPTQ-Marlin loading in `GPTQMarlinWeightLoader` (#2300)
The `GPTWeightLoader` was structured like this in pseudocode:

if marlin:
  Set up tensors in a way that GPTQ-Marlin expects
else:
  Set up tensors in a way that ExLlama/GPTQ/AWQ expect

However, the GPT-Marlin implementation details should really be in the
`marlin` module. So move the former part out to a separate
`GPTQMarlinWeightsLoader`.
2024-07-31 13:08:41 +02:00
Nicolas Patry 2b19d671b4
Rebase TRT-llm (#2331)
* wip

wip

refacto

refacto

Initial setup for CXX binding to TRTLLM

Working FFI call for TGI and TRTLLM backend

Remove unused parameters annd force tokenizer name to be set

Overall build TRTLLM and deps through CMake build system

Enable end to end CMake build

First version loading engines and making it ready for inference

Remembering to check how we can detect support for chunked context

Move to latest TensorRT-LLM version

Specify which default log level to use depending on CMake build type

make leader executor mode working

unconditionally call InitializeBackend on the FFI layer

bind to CUDA::nvml to retrieve compute capabilities at runtime

updated logic and comment to detect cuda compute capabilities

implement the Stream method to send new tokens through a callback

use spdlog release 1.14.1 moving forward

update trtllm to latest version a96cccafcf6365c128f004f779160951f8c0801c

correctly tell cmake to build dependent tensorrt-llm required libraries

create cmake install target to put everything relevant in installation folder

add auth_token CLI argument to provide hf hub authentification token

allow converting huggingface::tokenizers error to TensorRtLlmBackendError

use correct include for spdlog

include guard to build example in cmakelists

working setup of the ffi layer

remove fmt import

use external fmt lib

end to end ffi flow working

make sure to track include/ffi.h to trigger rebuild from cargo

impl the rust backend which currently cannot move the actual computation in background thread

expose shutdown function at ffi layer

impl RwLock scenario for TensorRtLllmBackend

oops missing c++ backend definitions

compute the number of maximum new tokens for each request independently

make sure the context is not dropped in the middle of the async decoding.

remove unnecessary log

add all the necessary plumbery to return the generated content

update invalid doc in cpp file

correctly forward back the log probabilities

remove unneeded scope variable for now

refactor Stream impl for Generation to factorise code

expose the internal missing start/queue timestamp

forward tgi parameters rep/freq penalty

add some more validation about grammar not supported

define a shared struct to hold the result of a decoding step

expose information about potential error happening while decoding

remove logging

add logging in case of decoding error

make sure executor_worker is provided

add initial Dockerfile for TRTLLM backend

add some more information in CMakeLists.txt to correctly install executorWorker

add some more information in CMakeLists.txt to correctly find and install nvrtc wrapper

simplify prebuilt trtllm libraries name definition

do the same name definition stuff for tensorrt_llm_executor_static

leverage pkg-config to probe libraries paths and reuse new install structure from cmake

fix bad copy/past missing nvinfer linkage direction

align all the linker search dependency

add missing pkgconfig folder for MPI in Dockerfile

correctly setup linking search path for runtime layer

fix missing / before tgi lib path

adding missing ld_library_path for cuda stubs in Dockerfile

update tgi entrypoint

commenting out Python part for TensorRT installation

refactored docker image

move to TensorRT-LLM v0.11.0

make docker linter happy with same capitalization rule

fix typo

refactor the compute capabilities detection along with num gpus

update TensorRT-LLM to latest version

update TensorRT install script to latest

update build.rs to link to cuda 12.5

add missing dependant libraries for linking

clean up a bit

install to decoder_attention target

add some custom stuff for nccl linkage

fix envvar CARGO_CFG_TARGET_ARCH set at runtime vs compile time

use std::env::const::ARCH

make sure variable live long enough...

look for cuda 12.5

add some more basic info in README.md

* Rebase.

* Fix autodocs.

* Let's try to enable trtllm backend.

* Ignore backends/v3 by default.

* Fixing client.

* Fix makefile + autodocs.

* Updating the schema thing + redocly.

* Fix trtllm lint.

* Adding pb files ?

* Remove cargo fmt temporarily.

* ?

* Tmp.

* Remove both check + clippy  ?

* Backporting telemetry.

* Backporting 457fb0a1

* Remove PB from git.

* Fixing PB with default member backends/client

* update TensorRT-LLM to latest version

* provided None for api_key

* link against libtensorrt_llm and not libtensorrt-llm

---------

Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
Co-authored-by: Morgan Funtowicz <morgan@huggingface.co>
2024-07-31 10:33:10 +02:00
Daniël de Kok 53aec27328
server quantize: store quantizer config in standard format (#2299)
- Create `quantization_config` option in the model config.
- Don't store the quantizer config in tensors anymore.
2024-07-30 15:16:20 +02:00
drbh 0b95693fb8
fix: adjust test snapshots and small refactors (#2323)
* fix: adjust test snapshots and small refactors

* fix: revert non snapshot changes
2024-07-29 11:38:38 -04:00
Erik Kaunismäki 3d7f4f41bb
patch-error-on-invalid-grammar (#2282)
* quick fix

* allow silent failure

* explicit todo that this is only short term
2024-07-29 10:09:25 -04:00
drbh f15e808d4c
fix: reject grammars without properties (#2309) 2024-07-29 10:07:25 -04:00
Daniël de Kok 922732b255
Install Marlin from standalone package (#2320) 2024-07-29 15:37:10 +02:00
Erik Kaunismäki 583d37a2f8
Run ci api key (#2315)
* Add API_Key for Auth and conditionally add authorisation for non info/health endpoints.

* change name to info routes

* Fix comment

* convert strings to lowercase for case insensitive comparison

* convert header to string

* fixes and update docs

* update docs again

* revert wrong update

---------

Co-authored-by: Kevin Duffy <kevin.duffy94@gmail.com>
2024-07-29 11:14:17 +02:00
Adrien fd2e06316d
fix: fix buildkit config in ci
Signed-off-by: Adrien <adrien@huggingface.co>
2024-07-29 09:25:56 +02:00
drbh bab02ff2bc
feat: add ruff and resolve issue (#2262)
* feat: add ruff and resolve issue

* fix: update client exports and adjust after rebase

* fix: adjust syntax to avoid circular import

* fix: adjust client ruff settings

* fix: lint and refactor import check and avoid model enum as global names

* fix: improve fbgemm_gpu check and lints

* fix: update lints

* fix: prefer comparing model enum over str

* fix: adjust lints and ignore specific rules

* fix: avoid unneeded quantize check
2024-07-26 10:29:09 -04:00
Daniël de Kok 4b49c50f4c
Support tied embeddings in 0.5B and 1.5B Qwen2 models (#2313) 2024-07-26 14:57:24 +02:00
Adrien 3905f854ed
Fix registry name (#2307) 2024-07-25 16:06:00 +02:00
Nicolas Patry 17ed42be3a
Fixing idefics on g6 tests. (#2306) 2024-07-25 14:44:21 +02:00
Daniël de Kok 9256d7c38c
Some small fixes for the Torch 2.4.0 update (#2304)
* Fix GPTQ autotune data type to be compatible with Torch 2.4.0

* Update poetry lock file

* Fix small PaliGemma logprob differences after the torch update
2024-07-25 13:34:44 +02:00
Nicolas Patry 26614057a7
Using g6 instead of g5. (#2281)
* Using g6 instead of g5.

* Update the idefics2 snapshot.
2024-07-25 11:21:17 +02:00
drbh 5d85a958c9
fix: refactor adapter weight loading and mapping (#2193)
* fix: refactor adapter weight loading and mapping

* feat: enable lora load from directory

* fix: adjust launcher for local lora adapters

* feat: improve weight loading and add tests

* fix: improve logging and rebase syntax issue

* fix: impove adapter merge comments and remove unused conditional

* fix: improve get_model_with_lora_adapters naming

* fix: comment typo
2024-07-24 15:32:14 -04:00
Daniël de Kok 93d2b9fe9c
Split up `layers.marlin` into several files (#2292)
The marlin.py file was getting large, split it up.
2024-07-24 16:33:26 +02:00
Wang, Yi 8642250602
fix of use of unquantized weights in cohere GQA loading, also enable … (#2291)
fix of use of unquantized weights in cohere GQA loading, also enable the model in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-24 10:44:02 +02:00
Wang, Yi 5ad39dd3c3
fix crash in multi-modal (#2245)
* fix crash in multi-modal

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update according to review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix llava_next regression in latest main

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-24 10:39:08 +02:00
OlivierDehaene a895029424
hotfix: update nccl 2024-07-23 23:31:28 +02:00
OlivierDehaene e7e3aa6cac
chore: update to torch 2.4 (#2259)
* chore: update to torch 2.4

* remove un-necessary patch

* fix
2024-07-23 20:39:43 +00:00
Daniël de Kok bc9593a5b1
hotfix: pin numpy (#2289) 2024-07-23 17:53:19 +02:00
Daniël de Kok 4ab4173767
Add support for Llama 3 rotary embeddings (#2286)
* Add support for Llama 3 rotary embeddings

* Update transformers to 4.43
2024-07-23 17:18:54 +02:00
Nicolas Patry 5d121a9705
Preparing for release. (#2285)
* Preparing for release.

* Updating docs.

* Fixing token within the docker image for the launcher.
2024-07-23 16:20:17 +02:00
shaltielshmid 3961e32390
[WIP] Add support for Mistral-Nemo by supporting head_dim through config (#2254)
* Support passing head_dim through config

* Using `head_dim` as a fallback is necessary since it's a non standard
key in mistralConfig (as defined in transformers).

* Shorter diff.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-07-23 15:00:07 +02:00
Daniël de Kok 9935720c87
Add support for repacking AWQ weights for GPTQ-Marlin (#2278)
* Add support for repacking AWQ weights for GPTQ-Marlin

So far we couldn't support AWQ because virtually all AWQ models use
symmetric quantization, which GPTQ-Marlin did not suppors. GPTQ-Marlin
has recently added support AWQ repacking and AWQ asymmetric quantization
(zero_point=True).

This change updates all GPTQ-Marlin kernels from upstream and wires up
AWQ support. For now enabling AWQ using Marlin requires running TGI with
`--quantize gptq`.

* Enable Marlin for supported AWQ configurations by default

This makes the AWQ -> GPTQ repack test redundant, since we are now
testing this with the regular AWQ test.
2024-07-23 13:08:20 +02:00
OlivierDehaene 5fca30ee15
fix(l4): fix fp8 logic on l4 (#2277)
* fix(l4): fix fp8 logic on l4

* also quant weights with single scale

* use marlin even on 89
2024-07-23 11:24:29 +02:00
Nicolas Patry abc32537ea
Fixing mistral nemo. (#2276) 2024-07-23 11:16:03 +02:00
Adrien 4700465192
use proper name for ci (#2274) 2024-07-22 21:50:53 +02:00
Nicolas Patry 6aeb669072
Softcapping for gemma2. (#2273)
* Softcapping for gemma2.

* Less clutter.

* No access to transformers config, only config_dict here.

* 0.0 is the null value in the C++ API.
2024-07-22 18:27:10 +02:00
OlivierDehaene 4844ff790a
fix(server): fix fp8 weight loading (#2268)
* fix(server): fix fp8 weight loading

* fixed scales loading

* update snap

* revert default dtype
2024-07-22 15:51:32 +00:00
Adrien 6aebf44f47
fix(ci): test new instances (#2272)
* test new instances

Signed-off-by: Adrien <adrien@huggingface.co>

* improve build ci

Signed-off-by: Adrien <adrien@huggingface.co>

---------

Signed-off-by: Adrien <adrien@huggingface.co>
2024-07-22 14:41:30 +02:00
Erik Kaunismäki 07441f5a7a
legacy warning on text_generation client (#2271)
Update README.md

point to huggingface_hub inference clients instead
2024-07-22 12:00:17 +02:00
icyboy™ 4e4207224e
Hotfix: fix of use of unquantized weights in Mixtral GQA loading (#2269)
* Update idefics_causal_lm.py

Fix syntax issues

* fix dbrx & opt model prefix bug

* Hotfix: fix of use of unquantized weights in Mixtral GQA loading
2024-07-22 11:31:00 +02:00
OlivierDehaene f3435bab8c
fix(server): fix deepseekv2 loading (#2266) 2024-07-21 18:48:04 +02:00
OlivierDehaene 53ec0b790b
feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248)
* feat(fp8): add support for fbgemm

* allow loading fp8 weights directly

* update outlines

* fix makefile

* build fbgemm

* avoid circular import and fix dockerfile

* add default dtype

* refactored weights loader

* fix auto conversion

* fix quantization config parsing

* force new nccl on install

* missing get_weights implementation

* increase timeout
2024-07-20 19:02:04 +02:00
Daniël de Kok e5c1d6d611
Add FP8 release test (#2261) 2024-07-20 10:26:06 +00:00