Commit Graph

111 Commits

Author SHA1 Message Date
Daniël de Kok 7f54b7336a
Test Marlin MoE with `desc_act=true` (#2622)
Update the Mixtral GPTQ test to use a model with `desc_act=true` and
`group_size!=-1` to ensure that we are checking activation
sorting/non-full K (with tensor parallelism). The `desc_act=false` case
is already checked by the Mixtral AWQ test.
2024-10-21 12:50:35 +02:00
Nicolas Patry 153ff3740b
CI job. Gpt awq 4 (#2665)
* add gptq and awq int4 support in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix ci failure

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* set kv cache dtype

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* refine the code according to the review command

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Simplifying conditionals + reverting integration tests values.

* Unused import

* Fix redundant import.

* Revert change after rebase.

* Upgrading the tests (TP>1 fix changes to use different kernels.)

* Update server/text_generation_server/layers/gptq/__init__.py

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-10-18 17:55:53 +02:00
OlivierDehaene a6a0c97ed9
feat: prefill chunking (#2600)
* wip

* rollback

* refactor to use prefix/postfix namming + fix all_input_ids_tensor

* maybe patching vlms?

* fix filter and concat

* wip, no filter, no concat

* current

* add prepare_for_prefill

* working

* load tested

* re-create slots

* re-create slots

* fix slot_filtering_indices

* feedback loop

* remove log

* fix benchmarker

* fix vlm and seq2seq

* rename to cache and input lengths

* fix prefill logprobs

* fix launcher

* fix logprobs?

* idk at this point

* max input length

* omfg

* remove debugging lines

* fix tests

* fix mllama

* fix cargo tests

* remove support chunking for paged

* Fixing non blocked attentions

* Fixing dtype + AMD, Ipex targets.

* lint fix.

* rename

* Fix prefix_caching variable, remove defaults in server (confusing a lot
of the times).

* Add simple resolution when user specifies ATTENTION=paged.

* Put back non default simple tests.

* Fix env name

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-10-16 12:49:33 +02:00
Nicolas Patry 3dbdf63ec5
Intel ci (#2630)
* Intel CI ?

* Let's try non sharded gemma.

* Snapshot rename

* Apparently container can be gone already.
2024-10-10 16:51:57 +02:00
drbh e36dfaa8de
feat: allow tool calling to respond without a tool (#2614)
* feat: process token stream before returning to client

* fix: expect content in test

* fix: improve comparison via ruff lint

* fix: return event in all cases

* fix: always send event on error, avoid unwraps, refactor and improve tests

* fix: prefer no_tool over notify_error to improve reponse

* fix: adjust chat input test for no_tool

* fix: adjust test expected content

---------

Co-authored-by: System administrator <root@ip-10-90-0-186.ec2.internal>
2024-10-10 09:28:25 -04:00
Daniël de Kok 64142489b6
Add support for fused MoE Marlin for AWQ (#2616)
* Add support for fused MoE Marlin for AWQ

This uses the updated MoE Marlin kernels from vLLM.

* Add integration test for AWQ MoE
2024-10-08 11:56:41 +02:00
Daniël de Kok 2358c2bb54
Add basic FP8 KV cache support (#2603)
* Add basic FP8 KV cache support

This change adds rudimentary FP8 KV cache support. The support is
enabled by passing `--kv-cache-dtype fp8_e5m2` to the launcher. Doing so
uses this type for the KV cache. However support is still limited:

* Only the `fp8_e5m2` type is supported.
* The KV cache layout is the same as `float16`/`bfloat16` (HND).
* The FP8 KV cache is only supported for FlashInfer.
* Loading of scales is not yet supported.

* Fix Cargo.toml
2024-10-04 17:51:48 +02:00
drbh 3011639ff7
Revert "Unroll notify error into generate response" (#2605)
Revert "Unroll notify error into generate response (#2597)"

This reverts commit d22b0c1fbe.
2024-10-03 17:56:40 -04:00
drbh d22b0c1fbe
Unroll notify error into generate response (#2597)
* feat: unroll notify_error if no tool is choosen

* fix: expect simple message when no tool is selected

* fix: improve test to avoid notify_error

* fix: improve docs and indicate change in expected response

* fix: adjust linting in test file
2024-10-02 11:34:57 -04:00
Nicolas Patry d18ed5cfc5
Mllama flash version (#2585)
* Working loading state.

* Preprocessing.

* Working state ? (Broke idefics1 temporarily).

* Cleaner condition.

* Fix idefics.

* Updating config, removing TODO

* Mllama

* Ugrade transformers 4.45

* Flashing mllama.

* Starting to get there.

* Working state.

* Integrations tests for mllama (cutting to 10 tokens because there seems'
to be instability after (meaning size of the batch matters.

* Updating model link.

* Earlier assert.

* Fix vlm ?

* remove log.

* Force ignore all images but last.

* Default dtype bfloat16.

* Update integration test after switch to bf16.

* Remove dead code.

* Removed dead code.

* Upgrade the flake to latest transformers/tokenizers

* Move to hf tgi-nix

* Upgrade to 0.5.0
2024-10-02 11:22:13 +02:00
drbh 93a7042d7e
feat: support phi3.5 moe (#2479)
* feat: support phi3.5 moe model loading

* fix: prefer llama base model and improve rotary logic

* feat: return reasonable generation and add integration test

* fix: run lint and update docs

* fix: rerun lint for openapi docs

* fix: prefer do_sample false unless temp is set by user, and update chat tests

* fix: small typo adjustments

* fix: consolidate long rope paths

* fix: revert greedy by default and test changes

* Vendor configuration so that we don't have to `trust_remote_code`

* Use SparseMoELayer

* Add support for dense MoE

* Some type annotations

* Add the usual model tests

* Ruff.

---------

Co-authored-by: Daniël de Kok <me@danieldk.eu>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-09-30 11:15:09 +02:00
Daniël de Kok 90a1d04a2f
Add support for GPTQ-quantized MoE models using MoE Marlin (#2557)
This change add support for MoE models that use GPTQ quantization.
Currently only models with the following properties are supported:

- No `desc_act` with tensor parallelism, unless `group_size=-1`.
- No asymmetric quantization.
- No AWQ.
2024-09-30 11:14:32 +02:00
Nicolas Patry dd8691b7c5
More tensor cores. (#2558)
* More tensor cores.

* Fixing the logic.

* Gemma is modified by this.
2024-09-24 23:57:26 +02:00
Nicolas Patry f512021e77
Stream options. (#2533)
* Stream options.

* Fetch stuff from nix integration test for easier testing.

* Adding the assert.

* Only send the usage when asked for.

* Update the docs.

* Impure test because we need network.

* develop.

* Optional usage.

* Fixes.

* Workflow
2024-09-19 20:50:37 +02:00
Daniël de Kok ce85efa968
Move to moe-kernels package and switch to common MoE layer (#2511)
* Move to moe-kernels package and switch to common MoE layer

This change introduces the new `moe-kernels` package:

- Add `moe-kernels` as a dependency.
- Introduce a `SparseMoELayer` module that can be used by MoE
  models.
- Port over Mixtral and Deepseek.

* Make `cargo check` pass

* Update runner
2024-09-17 18:08:58 +02:00
Nicolas Patry 38fcafcf96
Adding a test for FD. (#2516)
* Adding a test for FD.

* Fixing flashdecoding (empty batch doesn't work).

* Fixing the invalid popping.

* Fixing radix with block_size > 1

* Last reference.

* Use an actual hash.

* Update hash for slice.len() == 1

* Update the locks.

* Increasing docker timeout.
2024-09-16 17:00:54 +02:00
Daniël de Kok 7774655297
Add tests for Mixtral (#2520)
Disable by default because CI runners do not have enough GPUs.
2024-09-16 12:39:18 +02:00
Nicolas Patry 69e3be20fb
Fix truffle (#2514)
* Attempting to discard the trufflehog warning.

* Attempt to fix trufflehog.
2024-09-11 22:45:19 +02:00
Nicolas Patry a4e3e8c608
Prefix test - Different kind of load test to trigger prefix test bugs. (#2490)
* Adding prefix test.

* [WIP] tmp dump of integration load tests.

* Remove other tensor creation.

* Fixed the radix tree.

Used a slice everywhere in radix.rs to keep the cheap Arc cloning
instead of recomputing the input_ids.

* Fix parsing

* Is it really flashinfer version ?

* Remove some comments.

* Revert the max prefix hit.

* Adding numpy to diff.

* Upgraded flashinfer.

* Upgrading some stuff.

* Are we done yet ?

* Minor fixup

* Remove 1 log and put back the other.

* Add comment for why slot 0 is OK.

* Mounting on the job.

* Get me a debug branch

* Debugging CIs is fun.

* Attempt #28

* wip

* Tmate.

* Praying.

* Updating VLM causal model with updated context.

* Important line got squashed.

* Tmate again.

* Fingers crossed.

* We want only 1 run of integration tests.....

---------

Co-authored-by: Guillaume LEGENDRE <glegendre01@gmail.com>
2024-09-11 18:10:40 +02:00
Nicolas Patry e415b690a6
Lots of improvements (Still 2 allocators) (#2449)
* Making prefix/flashinfer the default and testing the full release tests.

* Include flashinfer in the docker.

* Using prebuilt.

* Allowing window_left_size (dummy version).

* Disabling flashinfer/prefix caching on odd head_dim

* Disable prefix caching for lora.

* More specific codes.

* Update lock

* Updating integration tests with new values with FI/FD.

Remove paged as a default too, and using FD everywhere.

* Update cargo lock ?

* Upgrade to 1.80 because of bitstream...

* Everywhere 1.80

* Forgot last default place.

* Apply suggestions from code review

Co-authored-by: drbh <david.richard.holtz@gmail.com>

* Updated flake lock

* Tmp

* Upgrade resolution system for less errors in resolution.

* Remove lambda for cleaner function.

* Handling debugger.

* OVerride the env in server tests.

* Is this enough to make it work ?

* This seems to be working.

* Downgrade some logs.

* Fixing the default for vlm.

* Don't enable prefix caching on VLM just yet.

* Change `add_special_tokens` in order to have the correct tokens for chat
input and not (since it's super important with the prefixing now)

* Fixing prefix caching for flashdecoding.

* Update all models.

* Fixed flashinfer version.

* add_special_tokens is internal only

* Fixing seqlen with the new vlms.

* Fixing the issue with `add_special_tokens` not being passed around.

* Fixing the test.

* Removing encoder_decoder (seq2seq).

* Update the chat test.

* Fixing the batching tokenization in flash causal lm.

* Truncating left for radix purposes.

* Oops this doesn't belong here.

* Put back default pure shell.

* Update server tests

- Default to throughput test in k6
- Use TGI_WIGGLE_ROOM to adjust wiggle room

* Only n_heads / process_group.size() are necessary.

* Revert the integrationt tests change (seem linked to head_size
modification).

* Adding error message when assert is violated.

* Fixing the free algorithm to handle times where the common prefix is
smaller.

* Apply suggestions from code review

Co-authored-by: OlivierDehaene <olivier@huggingface.co>

* Update server/text_generation_server/layers/attention/common.py

Co-authored-by: OlivierDehaene <olivier@huggingface.co>

* Fix disabling prefix caching - Fix windowing checks.

* Revert the Cohere tokenizer change (for now using a revision instead).

* Fmt.

---------

Co-authored-by: drbh <david.richard.holtz@gmail.com>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2024-08-29 16:29:01 +02:00
drbh cfa73b5c99
Pr 2451 ci branch (#2454)
* fix[router]: Fix tools not passed in chat template

Signed-off-by: GitHub <noreply@github.com>

* feat: improve default tool serialization and lints

* feat: refactor tool logic to include notify_error in prompt and adjust typing

* fix: adjust non tool template apply

* fix: simplify tool grammar logic and improve schema

* feat: avoid skip tool test and avoid empty tool prompts

* fix: increase test client timeout for grammar compilation tests

---------

Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: Simone Rossi <simone.rossi.93@gmail.com>
2024-08-26 20:19:38 -04:00
Nicolas Patry e4201f44cf
All integration tests back everywhere (too many failed CI). (#2428)
* All integration tests back everywhere (too many failed CI).

* Upgrade integration tests after 12.4

* Attempt to remove the specifed compute cap.

* Common arch list.

* Punica uses raw ASM which is not valid on 9.0 apparently.
2024-08-16 21:19:46 +02:00
Nicolas Patry c7ab1810d4
Further fixes. (#2426)
* Further fixes.

* Update the conftest to allow NaN (first logprob).

* Fix the condition.
2024-08-16 13:21:44 +02:00
Nicolas Patry 1b0aa06204
Upgrading the tests to match the current workings. (#2423) 2024-08-15 13:28:42 +02:00
Nicolas Patry 57b3495823
Fixing exl2 and other quanize tests again. (#2419)
* Fixing exl2 and other quanize tests again.

* Mark exl2 as non release (so CI tests them, needs to be removed latet).

* Fixing exl2 (by disabling cuda graphs)

* Fix quantization defaults without cuda graphs on exl2 (linked to new
issues with it).

* Removing serde override.

* Go back to released exl2 and remove log.

* Adding warnings for deprecated bitsandbytes + upgrade info to warn.
2024-08-15 11:12:51 +02:00
Nicolas Patry 9c739651cd
Upgrade fbgemm (#2398)
* Upgrade fbgemm

* Fix fbgemm version
2024-08-12 14:08:38 +02:00
drbh a379d5536b
Fix the prefix for OPT model in opt_modelling.py #2370 (CI RUN) (#2371)
* Fix the bug

* fix: run lints

* fix: small syntax tweak

---------

Co-authored-by: Sadra Barikbin <sadraqazvin1@yahoo.com>
2024-08-07 23:14:02 -04:00
drbh 0b95693fb8
fix: adjust test snapshots and small refactors (#2323)
* fix: adjust test snapshots and small refactors

* fix: revert non snapshot changes
2024-07-29 11:38:38 -04:00
drbh bab02ff2bc
feat: add ruff and resolve issue (#2262)
* feat: add ruff and resolve issue

* fix: update client exports and adjust after rebase

* fix: adjust syntax to avoid circular import

* fix: adjust client ruff settings

* fix: lint and refactor import check and avoid model enum as global names

* fix: improve fbgemm_gpu check and lints

* fix: update lints

* fix: prefer comparing model enum over str

* fix: adjust lints and ignore specific rules

* fix: avoid unneeded quantize check
2024-07-26 10:29:09 -04:00
Nicolas Patry 17ed42be3a
Fixing idefics on g6 tests. (#2306) 2024-07-25 14:44:21 +02:00
Daniël de Kok 9256d7c38c
Some small fixes for the Torch 2.4.0 update (#2304)
* Fix GPTQ autotune data type to be compatible with Torch 2.4.0

* Update poetry lock file

* Fix small PaliGemma logprob differences after the torch update
2024-07-25 13:34:44 +02:00
Nicolas Patry 26614057a7
Using g6 instead of g5. (#2281)
* Using g6 instead of g5.

* Update the idefics2 snapshot.
2024-07-25 11:21:17 +02:00
Nicolas Patry 6aeb669072
Softcapping for gemma2. (#2273)
* Softcapping for gemma2.

* Less clutter.

* No access to transformers config, only config_dict here.

* 0.0 is the null value in the C++ API.
2024-07-22 18:27:10 +02:00
OlivierDehaene 4844ff790a
fix(server): fix fp8 weight loading (#2268)
* fix(server): fix fp8 weight loading

* fixed scales loading

* update snap

* revert default dtype
2024-07-22 15:51:32 +00:00
Daniël de Kok e5c1d6d611
Add FP8 release test (#2261) 2024-07-20 10:26:06 +00:00
Daniël de Kok e52be9bba2
Add support for Deepseek V2 (#2224)
Deepseek V2 is a MoE model from Deepseek. Relevant variations
compared to other models:

- Grouped top-K in expert selection.
- mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
  configuration options.
- `mscale_all_dim` is also used in scaling attention softmax.
- Permuting of the query/key representations before applying rotary
  embeddings.
- Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
  So, we need weight loads that supports quantized weights. To this
  end `{Weights,WeightLoader}.get_weight` was added.
- The query/key head dimensionality differs from that of the value,
  so we need to pad during attention.
- Heads with size 192, needs an extension to our paged attention
  fork and we need to ensure that the KV cache is allocated with the
  correct size.
- Shared experts.
2024-07-19 17:23:20 +02:00
Daniël de Kok ba291dad9f
Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights

Handling of quantized weights was split between two mechanisms:

- For quantized checkpoints, we used the new weight loader
  infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
  instead relied on conditional in `get_linear`.

Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.

This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:

- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
  `get_linear` does not need to know how to handle quantizer linear
  layers.
- All quantizer weights are strongly typed, we don't pass around
  raw tensors.
- We don't have to pass around the `quantizer` string everywhere.

* Exclude non-MLP layers when using FP8 quantization with Llama
2024-07-19 09:37:39 +02:00
drbh 5a65066922
feat: simple mistral lora integration tests (#2180)
* feat: simple mistral lora integration tests

* fix: include args in docker launcher

* fix: disable cuda graphs with lora and warn

* fix: adjust docs and precommit issues

* fix: re update docs
2024-07-15 09:16:15 -04:00
Daniël de Kok 67ef0649cf
GPTQ CI improvements (#2151)
* Add more representative Llama GPTQ test

The Llama GPTQ test is updated to use a model with the commonly-used
quantizer config format and activation sorting. The old test is
kept around (but renamed) since it tests the format produced by
`text-generation-server quantize`.

* Add support for manually triggering a release build
2024-07-05 14:12:16 +02:00
Nicolas Patry fb2f74e2b9
Refactor dead code - Removing all `flash_xxx.py` files. (#2166)
* Refactor dead code.

* First working step.

* Remove a lot of duplicated code.

* More dead code.

* More cleanup.

* Fix Santacoder test.

* Fixing the simple tests.

* Fixing sharding.

* Fixes for VLM.

* Fixing santacoder (num_kv_heads hardcoded).

* Removing more dead code.

* Fixing `config.n_head`.

* Stopping earlier because of `<end_of_utterance>` in idefics2.

* Addresses comments.

* Removing the dead code.

* Fuse back mistral into FlashCausalLM.

* Finish removal.

* Fixing docs + causal_lm `batch_class`.

* Fixing docs + causal.lm.

* Add default to Gemma Causality.

* Default value for gemma/gemma2.

* Wrong default.
2024-07-05 10:29:56 +02:00
Daniël de Kok 2ce8019480
Use GPTQ-Marlin for supported GPTQ configurations (#2111)
GPTQ-Marlin is currently the best-performing kernel for GPTQ models. So
let's use it by default if the kernels are installed, the GPU supports
it, and the kernels support the configuration.

For models generated by `text-generation-server quantize`, use
`sym=False`. This subcommand symmetric quantization since the beginning
and incorrectly reporting the model to be symmetric will use
GPTQ-Marlin (which does not support asymmetric quantization).
2024-07-01 12:59:12 +02:00
Daniël de Kok dd2d91b043
Idefics2: sync added image tokens with transformers (#2080)
Before this change, the number of reserved image tokens was not the
same as the number of images. Fixes #2029.

While at it, also remove all the image token handling duplication
in `prepare_input`.
2024-06-27 15:54:35 +02:00
Daniël de Kok fc9c3153e5
Add pytest release marker (#2114)
* Add pytest release marker

Annotate a test with `@pytest.mark.release` and it only gets run
with `pytest integration-tests --release`.

* Mark many models as `release` to speed up CI
2024-06-25 16:53:20 +02:00
Daniël de Kok e903770897
Support different image sizes in prefill in VLMs (#2065)
When a batch contained images if different sizes during prefill, the
server would fail (see e.g. #2056). Images were processed separately and
then concatenated. However, this can fail for images with different sizes.

Fix this by preprocessing all images in the batch together, so that the
image processor can ensure that all image tensors have compatible sizes.
2024-06-17 10:49:41 +02:00
Daniël de Kok 093a27c528
Add support for GPTQ Marlin (#2052)
Add support for GPTQ Marlin kernels

GPTQ Marlin extends the Marlin kernels to support common GPTQ
configurations:

- bits: 4 or 8
- groupsize: -1, 32, 64, or 128
- desc_act: true/false

Using the GPTQ Marlin kernels requires repacking the parameters in the
Marlin quantizer format.

The kernels were contributed by Neural Magic to VLLM. We vendor them
here for convenience.
2024-06-14 09:45:42 +02:00
drbh 376a0b7ada
Support chat response format (#2046)
* feat: support response_format in chat

* fix: adjust typos

* fix: add trufflehog lint
2024-06-11 10:44:56 -04:00
Daniël de Kok 4594e6faba Add support for Marlin-quantized models
This change adds support for Marlin-quantized models. Marlin is an
FP16xINT4 matmul kernel, which provides good speedups decoding batches
of 16-32 tokens. It supports quantized models with symmetric
quantization, groupsize -1 or 128, and 4-bit.

Tested with:

- Llama 2
- Llama 3
- Phi 3
2024-06-06 13:16:52 +02:00
Daniël de Kok 967ced2ff4 Gemma GPTQ checks: skip logprob checks
This test fails somewhat regularly due to non-determinism and this
test is primarily to verify that we are loading a model which doesn't
have `float16` as the default dtype correctly.
2024-05-30 11:28:05 +02:00
Daniël de Kok 36dd16017c Add support for exl2 quantization
Mostly straightforward, changes to existing code:

* Wrap quantizer parameters in a small wrapper to avoid passing
  around untyped tuples and needing to repack them as a dict.
* Move scratch space computation to warmup, because we need the
  maximum input sequence length to avoid allocating huge
  scratch buffers that OOM.
2024-05-30 11:28:05 +02:00
Daniël de Kok a401c83c35
Fix GPTQ for models which do not have float16 at the default dtype (simpler) (#1953)
# What does this PR do?

Fix GPTQ for models which do not have float16 at the default dtype

Before this change GPTQ models would not work if the model's default
data type is not `float16`. For example, Gemma GPTQ models would fail
because the default dtype of Gemma is `bfloat16`. There are two issues:

If the default `dtype` is not `float16`, the quantizer's `float16`
parameters get converted to that dtype. The kernels cannot deal
with non-`float16` types. The same applies to inputs of quantized ops.

This is resolved by setting the dtype of gptq/awq-quantized models to
`float16`.

Simpler version of #1951.

**Draft:** just testing...

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-05-27 14:41:28 +02:00