Commit Graph

420 Commits

Author SHA1 Message Date
drbh 4b10c8c30b fix: improve scales change and revert conditional 2024-08-14 16:38:15 +00:00
drbh ab4d480d91 fix: repack for marlin when single scale is provided 2024-08-13 16:52:15 -04:00
drbh 1cebccc72b
fix: adds causal to attention params (#2408)
fix: adds causal to attention params to check when using flash attn v1
2024-08-13 16:19:46 +02:00
Wang, Yi 59922f9bc1
add numa to improve cpu inference perf (#2330)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-13 15:33:55 +02:00
drbh 8a7749b8fb
fix: include create_exllama_buffers and set_device for exllama (#2407) 2024-08-12 17:59:37 -04:00
drbh 4c3f8a70a1
fix: allocate tmp based on sgmv kernel if available (#2345)
* fix: allocate tmp based on sgmv kernel if available

* fix: re add copy build artifacts step for punica kernels
2024-08-12 17:24:32 +02:00
drbh 155f9c98e2
feat: validate template variables before apply and improve sliding wi… (#2403)
* feat: validate template variables before apply and improve sliding window check

* fix: improve missing template var test
2024-08-12 10:58:40 -04:00
Daniël de Kok 8deeaca4ff
Add support for prefix caching to the v3 router (#2392)
This change adds support for prefix caching to the v3 router. This
is broken up from the backend support to ease reviewing.

For now prefix caching is only enabled with `USE_PREFIX_CACHING=1`
in this case, the router will switch to `RadixAllocator`. This
allocator uses a radix trie to keep track of prefills that were
seen prior. If a new prefill is a prefix of a previously-seen
prefil, the router will send a request with `prefix_len>0`, which
can be used by the backend to decide to reuse KV blocks from the
cache, rather than recomputing them.

Even though backend support is not added in this PR, the backend
will still work with prefix caching enabled. The prefix lengths
are just ignored and not used.
2024-08-12 14:59:17 +02:00
Nicolas Patry 84bc3d7b7d
Fixing import exl2 (#2399) 2024-08-12 14:08:59 +02:00
Nicolas Patry 7a48a84784
Using an enum for flash backens (paged/flashdecoding/flashinfer) (#2385)
* Using an enum for flash backens (paged/flashdecoding/flashinfer)

* Early exit on server too.

* Clippy.

* Fix clippy and fmt.
2024-08-09 16:41:17 +02:00
Vaibhav Srivastav b2b9c42724
Update documentation for Supported models (#2386)
* Minor doc fixes

* up.

* Other minor updates.
2024-08-09 15:01:34 +02:00
Daniël de Kok 7830de1566
Add FlashInfer support (#2354)
This change adds support for FlashInfer. FlashInfer can be enabled using
`FLASH_INFER=1` and is currently only implemented in `FlashCausalLM`.
Since this functionality is currently only for testing, FlashInfer is
not installed anywhere yet.

The FlashInfer API is quite different from FlashAttention/vLLM in that
it requires more global bookkeeping:

* A wrapper class needs to be contstructed (which we just call *state*).
  Since this is fairly expensive (due to pinned host memory allocation),
  we only do this once in a FlashCausalLM instance or for each CUDA
  Graph size.
* Each model forward call needs to be wrapped in `begin_forward` and
  `end_forward`. This sets up data structures that can be reused for all
  calls to attention for that forward call.

When calling attention, we need access to the state object. To avoid
passing an argument down the call chain (which would require changes to
all models), we use a context variable.

Each model forward call is wrapped using a context manager that does all
the bookkeeping for such a call:

* Set the context variable to the forward call's state.
* Call `begin_forward` on the state.
* Yield.
* Call `end_forward` on the state.
* Reset the context variable.

We cannot use a single shared global variable for this, since e.g. CUDA
Graphs of different sizes each have their own state.
2024-08-09 11:42:00 +02:00
drbh f852190060
fix: prefer hidden_activation over hidden_act in gemma2 (#2381) 2024-08-08 14:08:56 -04:00
drbh 2ca5980634
Pr 2337 ci branch (#2379)
* hotfix: fix xpu crash brought by code refine. torch.xpu rely on import ipex

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* reable gemma2 in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix in regression in ipex flashattention

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-08 12:30:29 -04:00
Wang, Yi 689b1abbf6
fix EleutherAI/gpt-neox-20b does not work in tgi (#2346)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-08 12:08:52 -04:00
drbh 82d19d7723
Pr 2374 ci branch (#2378)
* Update __init__.py

Fix issue with NoneType comparison for max_input_tokens and sliding_window

- Add default values for max_input_tokens and sliding_window to handle None cases.
- Ensure the comparison between max_input_tokens and sliding_window is handled correctly to prevent TypeError.
- This change addresses the error: TypeError: '<=' not supported between instances of 'int' and 'NoneType'.

* Update __init__.py

Handle NoneType in sliding_window comparison to fix TypeError in __init__.py by ensuring the comparison logic accounts for NoneType values, preventing errors and improving code robustness.

* fix: syntax/style tweak

---------

Co-authored-by: Praz <prazanth2006@gmail.com>
2024-08-08 11:14:06 -04:00
drbh a379d5536b
Fix the prefix for OPT model in opt_modelling.py #2370 (CI RUN) (#2371)
* Fix the bug

* fix: run lints

* fix: small syntax tweak

---------

Co-authored-by: Sadra Barikbin <sadraqazvin1@yahoo.com>
2024-08-07 23:14:02 -04:00
drbh 21267f3ca3
add gptj modeling in TGI #2366 (CI RUN) (#2372)
* add gptj modeling

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix: update docs for model addition

* fix: adjust syntax typo

* fix: adjust syntax typo again

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-07 21:32:37 -04:00
almersawi 8094ecfc9e
fix: fix num_ln_in_parallel_attn attribute name typo in RWConfig (#2350)
Co-authored-by: Islam Almersawi <islam.almersawi@openinnovation.ai>
2024-08-07 19:45:23 -04:00
drbh 133015f408
fix: prefer original layernorm names for 180B (#2365) 2024-08-06 15:25:30 -04:00
drbh a64d407d64
fix: default num_ln_in_parallel_attn to one if not supplied (#2364) 2024-08-06 13:33:22 -04:00
drbh 29b8d19cdf
fix: return the out tensor rather then the functions return value (#2361) 2024-08-06 13:49:53 +02:00
drbh 215ed3ad52
fix: attempt forward on flash attn2 to check hardware support (#2335)
* fix: attempt forward on flash attn2 to check hardware support

* fix: warn window_size_left when using flash attn 1

* fix: prefer version check over test op and avoid window_size_left if not flash attn2

* fix: improve condtional and error message

* fix: update sliding window conditional

* fix: simplify changes and revert model changes

* fix: avoid changing conditional

* fix: typo tweak
2024-08-05 09:11:40 -04:00
Daniël de Kok 47447ef017
Unify attention output handling (#2343)
- Always return the hidden states.
- Create the output tensor inside the `attention` and `paged_attention`
  functions.

This removes the difference between how the output is handled between
attention (output parameter) and paged attention (return value). This
also removes the assumption that the attention implementation can
write to an output tensor (in preparation of FlashInfer).
2024-08-01 17:03:28 +02:00
Wang, Yi 9ab9937414
enable HuggingFaceM4/idefics-9b in intel gpu (#2338)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-01 11:08:36 +02:00
drbh f7f61876cf
Pr 2290 ci run (#2329)
* MODEL_ID propagation fix

* fix: remove global model id

---------

Co-authored-by: root <root@tw031.pit.tensorwave.lan>
2024-07-31 10:27:15 -04:00
Daniël de Kok 34f7dcfd80
Handle GPTQ-Marlin loading in `GPTQMarlinWeightLoader` (#2300)
The `GPTWeightLoader` was structured like this in pseudocode:

if marlin:
  Set up tensors in a way that GPTQ-Marlin expects
else:
  Set up tensors in a way that ExLlama/GPTQ/AWQ expect

However, the GPT-Marlin implementation details should really be in the
`marlin` module. So move the former part out to a separate
`GPTQMarlinWeightsLoader`.
2024-07-31 13:08:41 +02:00
Daniël de Kok 53aec27328
server quantize: store quantizer config in standard format (#2299)
- Create `quantization_config` option in the model config.
- Don't store the quantizer config in tensors anymore.
2024-07-30 15:16:20 +02:00
Erik Kaunismäki 3d7f4f41bb
patch-error-on-invalid-grammar (#2282)
* quick fix

* allow silent failure

* explicit todo that this is only short term
2024-07-29 10:09:25 -04:00
Daniël de Kok 922732b255
Install Marlin from standalone package (#2320) 2024-07-29 15:37:10 +02:00
drbh bab02ff2bc
feat: add ruff and resolve issue (#2262)
* feat: add ruff and resolve issue

* fix: update client exports and adjust after rebase

* fix: adjust syntax to avoid circular import

* fix: adjust client ruff settings

* fix: lint and refactor import check and avoid model enum as global names

* fix: improve fbgemm_gpu check and lints

* fix: update lints

* fix: prefer comparing model enum over str

* fix: adjust lints and ignore specific rules

* fix: avoid unneeded quantize check
2024-07-26 10:29:09 -04:00
Daniël de Kok 4b49c50f4c
Support tied embeddings in 0.5B and 1.5B Qwen2 models (#2313) 2024-07-26 14:57:24 +02:00
Daniël de Kok 9256d7c38c
Some small fixes for the Torch 2.4.0 update (#2304)
* Fix GPTQ autotune data type to be compatible with Torch 2.4.0

* Update poetry lock file

* Fix small PaliGemma logprob differences after the torch update
2024-07-25 13:34:44 +02:00
drbh 5d85a958c9
fix: refactor adapter weight loading and mapping (#2193)
* fix: refactor adapter weight loading and mapping

* feat: enable lora load from directory

* fix: adjust launcher for local lora adapters

* feat: improve weight loading and add tests

* fix: improve logging and rebase syntax issue

* fix: impove adapter merge comments and remove unused conditional

* fix: improve get_model_with_lora_adapters naming

* fix: comment typo
2024-07-24 15:32:14 -04:00
Daniël de Kok 93d2b9fe9c
Split up `layers.marlin` into several files (#2292)
The marlin.py file was getting large, split it up.
2024-07-24 16:33:26 +02:00
Wang, Yi 8642250602
fix of use of unquantized weights in cohere GQA loading, also enable … (#2291)
fix of use of unquantized weights in cohere GQA loading, also enable the model in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-24 10:44:02 +02:00
Wang, Yi 5ad39dd3c3
fix crash in multi-modal (#2245)
* fix crash in multi-modal

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update according to review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix llava_next regression in latest main

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-24 10:39:08 +02:00
Daniël de Kok 4ab4173767
Add support for Llama 3 rotary embeddings (#2286)
* Add support for Llama 3 rotary embeddings

* Update transformers to 4.43
2024-07-23 17:18:54 +02:00
shaltielshmid 3961e32390
[WIP] Add support for Mistral-Nemo by supporting head_dim through config (#2254)
* Support passing head_dim through config

* Using `head_dim` as a fallback is necessary since it's a non standard
key in mistralConfig (as defined in transformers).

* Shorter diff.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-07-23 15:00:07 +02:00
Daniël de Kok 9935720c87
Add support for repacking AWQ weights for GPTQ-Marlin (#2278)
* Add support for repacking AWQ weights for GPTQ-Marlin

So far we couldn't support AWQ because virtually all AWQ models use
symmetric quantization, which GPTQ-Marlin did not suppors. GPTQ-Marlin
has recently added support AWQ repacking and AWQ asymmetric quantization
(zero_point=True).

This change updates all GPTQ-Marlin kernels from upstream and wires up
AWQ support. For now enabling AWQ using Marlin requires running TGI with
`--quantize gptq`.

* Enable Marlin for supported AWQ configurations by default

This makes the AWQ -> GPTQ repack test redundant, since we are now
testing this with the regular AWQ test.
2024-07-23 13:08:20 +02:00
OlivierDehaene 5fca30ee15
fix(l4): fix fp8 logic on l4 (#2277)
* fix(l4): fix fp8 logic on l4

* also quant weights with single scale

* use marlin even on 89
2024-07-23 11:24:29 +02:00
Nicolas Patry abc32537ea
Fixing mistral nemo. (#2276) 2024-07-23 11:16:03 +02:00
Nicolas Patry 6aeb669072
Softcapping for gemma2. (#2273)
* Softcapping for gemma2.

* Less clutter.

* No access to transformers config, only config_dict here.

* 0.0 is the null value in the C++ API.
2024-07-22 18:27:10 +02:00
OlivierDehaene 4844ff790a
fix(server): fix fp8 weight loading (#2268)
* fix(server): fix fp8 weight loading

* fixed scales loading

* update snap

* revert default dtype
2024-07-22 15:51:32 +00:00
icyboy™ 4e4207224e
Hotfix: fix of use of unquantized weights in Mixtral GQA loading (#2269)
* Update idefics_causal_lm.py

Fix syntax issues

* fix dbrx & opt model prefix bug

* Hotfix: fix of use of unquantized weights in Mixtral GQA loading
2024-07-22 11:31:00 +02:00
OlivierDehaene f3435bab8c
fix(server): fix deepseekv2 loading (#2266) 2024-07-21 18:48:04 +02:00
OlivierDehaene 53ec0b790b
feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248)
* feat(fp8): add support for fbgemm

* allow loading fp8 weights directly

* update outlines

* fix makefile

* build fbgemm

* avoid circular import and fix dockerfile

* add default dtype

* refactored weights loader

* fix auto conversion

* fix quantization config parsing

* force new nccl on install

* missing get_weights implementation

* increase timeout
2024-07-20 19:02:04 +02:00
Daniël de Kok e52be9bba2
Add support for Deepseek V2 (#2224)
Deepseek V2 is a MoE model from Deepseek. Relevant variations
compared to other models:

- Grouped top-K in expert selection.
- mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
  configuration options.
- `mscale_all_dim` is also used in scaling attention softmax.
- Permuting of the query/key representations before applying rotary
  embeddings.
- Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
  So, we need weight loads that supports quantized weights. To this
  end `{Weights,WeightLoader}.get_weight` was added.
- The query/key head dimensionality differs from that of the value,
  so we need to pad during attention.
- Heads with size 192, needs an extension to our paged attention
  fork and we need to ensure that the KV cache is allocated with the
  correct size.
- Shared experts.
2024-07-19 17:23:20 +02:00
Daniël de Kok 3f37a66774
Hotfix: pass through model revision in `VlmCausalLM` (#2258) 2024-07-19 15:59:00 +02:00
Daniël de Kok 3b41e93a09
Hotfix: fix MPT after recent refactor (#2257) 2024-07-19 14:42:35 +02:00