Commit Graph

291 Commits

Author SHA1 Message Date
Daniël de Kok 7830de1566
Add FlashInfer support (#2354)
This change adds support for FlashInfer. FlashInfer can be enabled using
`FLASH_INFER=1` and is currently only implemented in `FlashCausalLM`.
Since this functionality is currently only for testing, FlashInfer is
not installed anywhere yet.

The FlashInfer API is quite different from FlashAttention/vLLM in that
it requires more global bookkeeping:

* A wrapper class needs to be contstructed (which we just call *state*).
  Since this is fairly expensive (due to pinned host memory allocation),
  we only do this once in a FlashCausalLM instance or for each CUDA
  Graph size.
* Each model forward call needs to be wrapped in `begin_forward` and
  `end_forward`. This sets up data structures that can be reused for all
  calls to attention for that forward call.

When calling attention, we need access to the state object. To avoid
passing an argument down the call chain (which would require changes to
all models), we use a context variable.

Each model forward call is wrapped using a context manager that does all
the bookkeeping for such a call:

* Set the context variable to the forward call's state.
* Call `begin_forward` on the state.
* Yield.
* Call `end_forward` on the state.
* Reset the context variable.

We cannot use a single shared global variable for this, since e.g. CUDA
Graphs of different sizes each have their own state.
2024-08-09 11:42:00 +02:00
drbh f852190060
fix: prefer hidden_activation over hidden_act in gemma2 (#2381) 2024-08-08 14:08:56 -04:00
Wang, Yi 689b1abbf6
fix EleutherAI/gpt-neox-20b does not work in tgi (#2346)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-08 12:08:52 -04:00
drbh 82d19d7723
Pr 2374 ci branch (#2378)
* Update __init__.py

Fix issue with NoneType comparison for max_input_tokens and sliding_window

- Add default values for max_input_tokens and sliding_window to handle None cases.
- Ensure the comparison between max_input_tokens and sliding_window is handled correctly to prevent TypeError.
- This change addresses the error: TypeError: '<=' not supported between instances of 'int' and 'NoneType'.

* Update __init__.py

Handle NoneType in sliding_window comparison to fix TypeError in __init__.py by ensuring the comparison logic accounts for NoneType values, preventing errors and improving code robustness.

* fix: syntax/style tweak

---------

Co-authored-by: Praz <prazanth2006@gmail.com>
2024-08-08 11:14:06 -04:00
drbh a379d5536b
Fix the prefix for OPT model in opt_modelling.py #2370 (CI RUN) (#2371)
* Fix the bug

* fix: run lints

* fix: small syntax tweak

---------

Co-authored-by: Sadra Barikbin <sadraqazvin1@yahoo.com>
2024-08-07 23:14:02 -04:00
drbh 21267f3ca3
add gptj modeling in TGI #2366 (CI RUN) (#2372)
* add gptj modeling

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix: update docs for model addition

* fix: adjust syntax typo

* fix: adjust syntax typo again

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-07 21:32:37 -04:00
almersawi 8094ecfc9e
fix: fix num_ln_in_parallel_attn attribute name typo in RWConfig (#2350)
Co-authored-by: Islam Almersawi <islam.almersawi@openinnovation.ai>
2024-08-07 19:45:23 -04:00
drbh 133015f408
fix: prefer original layernorm names for 180B (#2365) 2024-08-06 15:25:30 -04:00
drbh a64d407d64
fix: default num_ln_in_parallel_attn to one if not supplied (#2364) 2024-08-06 13:33:22 -04:00
drbh 215ed3ad52
fix: attempt forward on flash attn2 to check hardware support (#2335)
* fix: attempt forward on flash attn2 to check hardware support

* fix: warn window_size_left when using flash attn 1

* fix: prefer version check over test op and avoid window_size_left if not flash attn2

* fix: improve condtional and error message

* fix: update sliding window conditional

* fix: simplify changes and revert model changes

* fix: avoid changing conditional

* fix: typo tweak
2024-08-05 09:11:40 -04:00
Daniël de Kok 47447ef017
Unify attention output handling (#2343)
- Always return the hidden states.
- Create the output tensor inside the `attention` and `paged_attention`
  functions.

This removes the difference between how the output is handled between
attention (output parameter) and paged attention (return value). This
also removes the assumption that the attention implementation can
write to an output tensor (in preparation of FlashInfer).
2024-08-01 17:03:28 +02:00
Wang, Yi 9ab9937414
enable HuggingFaceM4/idefics-9b in intel gpu (#2338)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-01 11:08:36 +02:00
drbh f7f61876cf
Pr 2290 ci run (#2329)
* MODEL_ID propagation fix

* fix: remove global model id

---------

Co-authored-by: root <root@tw031.pit.tensorwave.lan>
2024-07-31 10:27:15 -04:00
drbh bab02ff2bc
feat: add ruff and resolve issue (#2262)
* feat: add ruff and resolve issue

* fix: update client exports and adjust after rebase

* fix: adjust syntax to avoid circular import

* fix: adjust client ruff settings

* fix: lint and refactor import check and avoid model enum as global names

* fix: improve fbgemm_gpu check and lints

* fix: update lints

* fix: prefer comparing model enum over str

* fix: adjust lints and ignore specific rules

* fix: avoid unneeded quantize check
2024-07-26 10:29:09 -04:00
Daniël de Kok 4b49c50f4c
Support tied embeddings in 0.5B and 1.5B Qwen2 models (#2313) 2024-07-26 14:57:24 +02:00
drbh 5d85a958c9
fix: refactor adapter weight loading and mapping (#2193)
* fix: refactor adapter weight loading and mapping

* feat: enable lora load from directory

* fix: adjust launcher for local lora adapters

* feat: improve weight loading and add tests

* fix: improve logging and rebase syntax issue

* fix: impove adapter merge comments and remove unused conditional

* fix: improve get_model_with_lora_adapters naming

* fix: comment typo
2024-07-24 15:32:14 -04:00
Wang, Yi 8642250602
fix of use of unquantized weights in cohere GQA loading, also enable … (#2291)
fix of use of unquantized weights in cohere GQA loading, also enable the model in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-24 10:44:02 +02:00
Wang, Yi 5ad39dd3c3
fix crash in multi-modal (#2245)
* fix crash in multi-modal

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update according to review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix llava_next regression in latest main

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-24 10:39:08 +02:00
shaltielshmid 3961e32390
[WIP] Add support for Mistral-Nemo by supporting head_dim through config (#2254)
* Support passing head_dim through config

* Using `head_dim` as a fallback is necessary since it's a non standard
key in mistralConfig (as defined in transformers).

* Shorter diff.

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-07-23 15:00:07 +02:00
Nicolas Patry abc32537ea
Fixing mistral nemo. (#2276) 2024-07-23 11:16:03 +02:00
Nicolas Patry 6aeb669072
Softcapping for gemma2. (#2273)
* Softcapping for gemma2.

* Less clutter.

* No access to transformers config, only config_dict here.

* 0.0 is the null value in the C++ API.
2024-07-22 18:27:10 +02:00
OlivierDehaene 4844ff790a
fix(server): fix fp8 weight loading (#2268)
* fix(server): fix fp8 weight loading

* fixed scales loading

* update snap

* revert default dtype
2024-07-22 15:51:32 +00:00
icyboy™ 4e4207224e
Hotfix: fix of use of unquantized weights in Mixtral GQA loading (#2269)
* Update idefics_causal_lm.py

Fix syntax issues

* fix dbrx & opt model prefix bug

* Hotfix: fix of use of unquantized weights in Mixtral GQA loading
2024-07-22 11:31:00 +02:00
OlivierDehaene f3435bab8c
fix(server): fix deepseekv2 loading (#2266) 2024-07-21 18:48:04 +02:00
OlivierDehaene 53ec0b790b
feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248)
* feat(fp8): add support for fbgemm

* allow loading fp8 weights directly

* update outlines

* fix makefile

* build fbgemm

* avoid circular import and fix dockerfile

* add default dtype

* refactored weights loader

* fix auto conversion

* fix quantization config parsing

* force new nccl on install

* missing get_weights implementation

* increase timeout
2024-07-20 19:02:04 +02:00
Daniël de Kok e52be9bba2
Add support for Deepseek V2 (#2224)
Deepseek V2 is a MoE model from Deepseek. Relevant variations
compared to other models:

- Grouped top-K in expert selection.
- mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
  configuration options.
- `mscale_all_dim` is also used in scaling attention softmax.
- Permuting of the query/key representations before applying rotary
  embeddings.
- Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
  So, we need weight loads that supports quantized weights. To this
  end `{Weights,WeightLoader}.get_weight` was added.
- The query/key head dimensionality differs from that of the value,
  so we need to pad during attention.
- Heads with size 192, needs an extension to our paged attention
  fork and we need to ensure that the KV cache is allocated with the
  correct size.
- Shared experts.
2024-07-19 17:23:20 +02:00
Daniël de Kok 3f37a66774
Hotfix: pass through model revision in `VlmCausalLM` (#2258) 2024-07-19 15:59:00 +02:00
Daniël de Kok 3b41e93a09
Hotfix: fix MPT after recent refactor (#2257) 2024-07-19 14:42:35 +02:00
Daniël de Kok 18db78f295
Hotfix: various GPT-based model fixes (#2256) 2024-07-19 14:42:19 +02:00
Daniël de Kok 80adb5be16
Hotfix: fix of use of unquantized weights in Gemma GQA loading (#2255) 2024-07-19 12:55:59 +02:00
Daniël de Kok ba291dad9f
Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights

Handling of quantized weights was split between two mechanisms:

- For quantized checkpoints, we used the new weight loader
  infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
  instead relied on conditional in `get_linear`.

Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.

This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:

- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
  `get_linear` does not need to know how to handle quantizer linear
  layers.
- All quantizer weights are strongly typed, we don't pass around
  raw tensors.
- We don't have to pass around the `quantizer` string everywhere.

* Exclude non-MLP layers when using FP8 quantization with Llama
2024-07-19 09:37:39 +02:00
OlivierDehaene 1d1b1efa01
fix(server): fix cohere (#2249) 2024-07-18 16:00:13 +02:00
Daniël de Kok 06d0e880e0
Add support for AWQ-quantized Idefics2 (#2233)
Fixes #2036.
2024-07-16 07:58:25 +02:00
Daniël de Kok 8511669cb2
Move quantized weight handling out of the `Weights` class (#2194)
Quantized weights were loaded in the `Weights` class, but this was
getting quite unwieldy, where every higher level method to load weights
was a long conditional to cover all the different quantizers.

This change moves loading of quantized weights out of the `Weights`
class. This is done by defining a simple `WeightsLoader` interface
that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`,
and `MarlinWeightsLoader`. These implementations are in the quantizers'
respective modules. The `Weights` class provides the low-level load
operations (such as loading tensors or sharded tensors), but delegates
loads that need quantizer-specific weight processing to a loader. The
loaders still use the low-level functionality provided by `Weights`.

I initially tried making a hierarchy where a class like `GPTQWeights`
would inherit from `Weights`. But it is not very flexible (e.g. does
not work well with the new weight storage mock used in tests) and
the implicit indirections made the code harder to follow.
2024-07-09 20:04:03 +02:00
Daniël de Kok 5c7c9f1390
Falcon/DBRX: get correct number of key-value heads (#2205) 2024-07-08 13:22:38 +02:00
Daniël de Kok 153fcf7739
Fix incorrect cache allocation with multi-query (#2203)
We wouldn't allocate any memory in multi-query (1 KV head). Fixes
Starcoder et al.
2024-07-08 11:19:48 +02:00
Daniël de Kok cce475a949
hotfix: Fix number of KV heads (#2202)
Fix number of KV heads
2024-07-08 09:52:12 +02:00
icyboy™ 521d0d990f
fix dbrx & opt model prefix bug (#2201)
* Update idefics_causal_lm.py

Fix syntax issues

* fix dbrx & opt model prefix bug
2024-07-08 09:01:14 +02:00
Daniël de Kok 05c094fcfa
Consistently take `prefix` in model constructors (#2191)
* Consistently take `prefix` in model constructors

* Release test check fix

* Misc refactor-related fixes
2024-07-05 16:07:48 +02:00
Daniël de Kok b67d46336e
Fix Starcoder2 after refactor (#2189) 2024-07-05 12:22:45 +02:00
Nicolas Patry 853d4eb9cf
Hotfixing after refactor. 2024-07-05 09:25:29 +00:00
Nicolas Patry fb2f74e2b9
Refactor dead code - Removing all `flash_xxx.py` files. (#2166)
* Refactor dead code.

* First working step.

* Remove a lot of duplicated code.

* More dead code.

* More cleanup.

* Fix Santacoder test.

* Fixing the simple tests.

* Fixing sharding.

* Fixes for VLM.

* Fixing santacoder (num_kv_heads hardcoded).

* Removing more dead code.

* Fixing `config.n_head`.

* Stopping earlier because of `<end_of_utterance>` in idefics2.

* Addresses comments.

* Removing the dead code.

* Fuse back mistral into FlashCausalLM.

* Finish removal.

* Fixing docs + causal_lm `batch_class`.

* Fixing docs + causal.lm.

* Add default to Gemma Causality.

* Default value for gemma/gemma2.

* Wrong default.
2024-07-05 10:29:56 +02:00
Nicolas Patry 0759ec495e
Hotfixing qwen2 and starcoder2 (which also get clamping). (#2167) 2024-07-02 14:26:47 +02:00
drbh b966bc0d35
fix: use the base layers weight in mistral rocm (#2155) 2024-07-02 11:56:25 +02:00
Nicolas Patry 022f6515a4
Fixing graph capture for flash decoding. (#2163) 2024-07-02 11:43:07 +02:00
Nicolas Patry 4327210e6b
[Major Change][Undecided yet] Move to FlashDecoding instead of PagedAttention kernel. (#1940)
* Using flash decoding

Conditional flashdecoding.

Fix max_q.

Working kvcache

Working version with flash decoding.

Make it work for mistral.

Fix after rebase..

Less intrusive.

REvert changes in modeling.

Speedup flashdecoding.

HHachweew
Hack to make other models work.

Fixing non flash decoding llama path.

Router logic knows about page size.

Missing 2 models.

Missing cohere.

Fixing cohere flash decoding.

Revamped all this architecture.

Fix cohere.

Fixing falcon.

Enabling custom block size schedule.

Update router/src/infer.rs

Not sending preallocated output.

* Making it work on non flash decoding.

* Fix Cohere.

* Fix non decoding paths.

* Rebased.

* No need for cache_manager anymore.

* Update?

* "ipex" -> "cpu"

* These do not belong.

* Factoring cu_seqlen_qk for better abstracting over every model.

* Fixing non flash tests/imports.

* Changing return everywhere.

* Update mistral past.

* Fixing Mi{s,x}tral (non functional in Flash Decoding mode though).

* Fixup mistral clamping (had issues with cuda graphs).

* No need to recreate anything actually.
2024-07-01 23:28:00 +02:00
Nicolas Patry 4f55f15840
Fixing baichuan override. (#2158) 2024-07-01 23:25:54 +02:00
Wang, Yi 5da4cfab1c
refine get xpu free memory/enable Qwen2/gemma2/gemma/phi in intel platform (#2132)
* refine get xpu free memory

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable qwen2 in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable gemma/gemma2/phi in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-01 14:32:54 +02:00
icyboy™ 9d0ca503a8
fix AttributeError: 'MixtralLayer' object has no attribute 'mlp' (#2123)
https://github.com/huggingface/text-generation-inference/issues/2122
2024-07-01 14:17:22 +02:00
drbh 25f57e2e98
fix: use weights from base_layer (#2141) 2024-07-01 12:58:40 +02:00