hf_text-generation-inference/server/text_generation_server/models/idefics.py

94 lines
2.9 KiB
Python

import torch
import torch.distributed
from typing import List, Optional, Tuple
from transformers import (
AutoTokenizer,
AutoConfig,
AutoProcessor,
)
from text_generation_server.models.custom_modeling.idefics_config import IdeficsConfig
from text_generation_server.models.custom_modeling.idefics_processing import (
IdeficsProcessor,
)
from transformers import LlamaTokenizerFast
from text_generation_server.models.custom_modeling.idefics_modeling import (
IdeficsForVisionText2Text,
)
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
Weights,
)
class IDEFICSSharded(IdeficsCausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
# 9b seems to work correctly enough in float16, but 80b seems
# to be really saturating for f16.
dtype = torch.float16 if dtype is None else dtype
else:
device = torch.device("cpu")
dtype = torch.float32 if dtype is None else dtype
self.device, self.dtype = device, dtype
config = IdeficsConfig.from_pretrained(
model_id,
revision=revision,
trust_remote_code=trust_remote_code,
)
config.quantize = quantize
config.use_medusa = use_medusa
config.vision_config.quantize = quantize
tokenizer = LlamaTokenizerFast.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
self.processor = IdeficsProcessor.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(
filenames,
device=device,
dtype=dtype,
process_group=self.process_group,
)
model = IdeficsForVisionText2Text(config, weights)
torch.distributed.barrier(group=self.process_group)
super(IdeficsCausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)