e52be9bba2
Deepseek V2 is a MoE model from Deepseek. Relevant variations compared to other models: - Grouped top-K in expert selection. - mscale in yarn is calculated using the `mscale` and `mscale_all_dim` configuration options. - `mscale_all_dim` is also used in scaling attention softmax. - Permuting of the query/key representations before applying rotary embeddings. - Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`). So, we need weight loads that supports quantized weights. To this end `{Weights,WeightLoader}.get_weight` was added. - The query/key head dimensionality differs from that of the value, so we need to pad during attention. - Heads with size 192, needs an extension to our paged attention fork and we need to ensure that the KV cache is allocated with the correct size. - Shared experts. |
||
---|---|---|
.. | ||
source | ||
README.md | ||
index.html | ||
openapi.json |
README.md
Documentation available at: https://huggingface.co/docs/text-generation-inference
Release
When making a release, please update the latest version in the documentation with:
export OLD_VERSION="2\.0\.3"
export NEW_VERSION="2\.0\.4"
find . -name '*.md' -exec sed -i -e "s/$OLD_VERSION/$NEW_VERSION/g" {} \;