c35f39cf83
# Add AWQ quantization inference support
Fixes
https://github.com/huggingface/text-generation-inference/issues/781
This PR (partially) adds support for AWQ quantization for inference.
More information on AWQ [here](https://arxiv.org/abs/2306.00978). In
general, AWQ is faster and more accurate than GPTQ, which is currently
supported by TGI.
This PR installs 4-bit GEMM custom CUDA kernels released by AWQ authors
(in `requirements.txt`, just one line change).
Quick way to test this PR would be bring up TGI as follows:
```
text-generation-server download-weights abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq
text-generation-launcher \
--huggingface-hub-cache ~/.cache/huggingface/hub/ \
--model-id abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq \
--trust-remote-code --port 8080 \
--max-input-length 2048 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 \
--quantize awq
```
Please note:
* This PR was tested with FlashAttention v2 and vLLM.
* This PR adds support for AWQ inference, not quantizing the models.
That needs to be done outside of TGI, instructions
[here](
|
||
---|---|---|
.. | ||
awq/quantize | ||
gptq | ||
__init__.py | ||
convert.py | ||
dist.py | ||
flash_attn.py | ||
hub.py | ||
layers.py | ||
logits_process.py | ||
peft.py | ||
tokens.py | ||
watermark.py | ||
weights.py |