hf_text-generation-inference/server/text_generation_server/utils/layers.py

613 lines
21 KiB
Python

import os
import torch
import torch.distributed
from torch import nn
from torch.nn import functional as F
from typing import List
HAS_BITS_AND_BYTES = True
try:
import bitsandbytes as bnb
from bitsandbytes.nn import Int8Params, Params4bit
except ImportError:
HAS_BITS_AND_BYTES = False
from accelerate import init_empty_weights
from text_generation_server.utils.gptq.quant_linear import QuantLinear
from text_generation_server.utils.awq.quantize.qmodule import WQLinear
try:
major, _minor = torch.cuda.get_device_capability()
except Exception:
major = 1
HAS_EXLLAMA = False
CAN_EXLLAMA = major >= 8
if os.getenv("DISABLE_EXLLAMA") == "True":
HAS_EXLLAMA = False
elif CAN_EXLLAMA:
try:
from text_generation_server.utils.gptq.exllama import Ex4bitLinear
HAS_EXLLAMA = True
except ImportError:
pass
from typing import Optional
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
weight = weights.get_tensor(f"{prefix}.weight")
bias = weights.get_tensor(f"{prefix}.bias")
with init_empty_weights():
ln = cls(weight.shape, eps=eps)
ln.weight = nn.Parameter(weight)
ln.bias = nn.Parameter(bias)
return ln
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
weight = weights.get_tensor(f"{prefix}.weight")
with init_empty_weights():
ln = cls(weight.shape, eps=eps)
ln.weight = nn.Parameter(weight)
ln.bias = None
return ln
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
weight = weights.get_tensor(f"{prefix}.weight")
bias = weights.get_tensor(f"{prefix}.bias")
with init_empty_weights():
conv2d = cls(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride)
conv2d.weight = nn.Parameter(weight)
conv2d.bias = nn.Parameter(bias)
return conv2d
@classmethod
def load_conv2d_no_bias(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
weight = weights.get_tensor(f"{prefix}.weight")
with init_empty_weights():
conv2d = cls(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride)
conv2d.weight = nn.Parameter(weight)
conv2d.bias = None
return conv2d
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
torch.nn.LayerNorm.load = load_layer_norm
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
class FastLinear(nn.Module):
def __init__(
self,
weight,
bias,
) -> None:
super().__init__()
self.weight = nn.Parameter(weight)
if bias is not None:
self.bias = nn.Parameter(bias)
else:
self.bias = None
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
weight = weights.get_tensor(f"{prefix}.weight")
if bias:
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return cls(weight, bias)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self.weight, self.bias)
class Linear8bitLt(nn.Module):
def __init__(
self,
weight,
bias,
has_fp16_weights=True,
memory_efficient_backward=False,
threshold=0.0,
index=None,
):
super().__init__()
assert (
not memory_efficient_backward
), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
self.state = bnb.MatmulLtState()
self.index = index
# Necessary for stacked layers
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.weight = Int8Params(
weight.data,
has_fp16_weights=has_fp16_weights,
requires_grad=has_fp16_weights,
)
self.weight.cuda(weight.device)
self.bias = bias
def init_8bit_state(self):
self.state.CB = self.weight.CB
self.state.SCB = self.weight.SCB
self.weight.CB = None
self.weight.SCB = None
def forward(self, x: torch.Tensor):
self.state.is_training = self.training
if self.weight.CB is not None:
self.init_8bit_state()
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
if not self.state.has_fp16_weights:
if self.state.CB is not None and self.state.CxB is not None:
# we converted 8-bit row major to turing/ampere format in the first inference pass
# we no longer need the row-major weight
del self.state.CB
self.weight.data = self.state.CxB
return out
class Linear4bit(nn.Module):
def __init__(self, weight, bias, quant_type):
super().__init__()
self.weight = Params4bit(
weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type
)
self.compute_dtype = None
self.weight.cuda(weight.device)
self.bias = bias
def forward(self, x: torch.Tensor):
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
if getattr(self.weight, "quant_state", None) is None:
print(
"FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
)
inp_dtype = x.dtype
if self.compute_dtype is not None:
x = x.to(self.compute_dtype)
bias = None if self.bias is None else self.bias.to(self.compute_dtype)
out = bnb.matmul_4bit(
x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
)
out = out.to(inp_dtype)
return out
def get_linear(weight, bias, quantize):
if quantize is None:
linear = FastLinear(weight, bias)
elif quantize == "bitsandbytes":
linear = Linear8bitLt(
weight,
bias,
has_fp16_weights=False,
threshold=6.0,
)
if bias is not None:
linear.bias = nn.Parameter(bias)
elif quantize == "bitsandbytes-fp4":
linear = Linear4bit(
weight,
bias,
quant_type="fp4",
)
elif quantize == "bitsandbytes-nf4":
linear = Linear4bit(
weight,
bias,
quant_type="nf4",
)
elif quantize == "gptq":
try:
qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
except Exception:
raise NotImplementedError(
f"The passed weight is not `gptq` compatible, loader needs to be updated."
)
if use_exllama:
linear = Ex4bitLinear(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
else:
linear = QuantLinear(
qweight,
qzeros,
scales,
g_idx,
bias,
bits,
groupsize,
)
elif quantize == "awq":
try:
qweight, qzeros, scales, _, bits, groupsize, _ = weight
except Exception:
raise NotImplementedError(
f"The passed weight is not `awq` compatible, loader needs to be updated."
)
linear = WQLinear(w_bit=bits, group_size=groupsize, qweight=qweight, qzeros=qzeros, scales=scales, bias=bias is not None)
else:
raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
return linear
class SuperLayer(nn.Module):
def __init__(self, linear):
super().__init__()
self.linear = linear
def forward(self, x):
return self.linear.forward(x)
class TensorParallelHead(SuperLayer):
def __init__(self, linear, process_group, should_gather: bool):
super().__init__(linear)
self.process_group = process_group
self.should_gather = should_gather
@staticmethod
def load(config, prefix: str, weights):
if weights.process_group.size() > 1:
try:
weight = weights.get_sharded(f"{prefix}.weight", dim=0)
should_gather = True
except AssertionError:
# If the vocab size is not divisible by number of shards
# just load the entire thing.
weight = weights.get_tensor(f"{prefix}.weight")
should_gather = False
else:
weight = weights.get_tensor(f"{prefix}.weight")
should_gather = False
# GPTQ and AWQ don't quantize heads (nor embeddings)
if config.quantize in ["gptq", "awq"]:
quantize = None
else:
quantize = config.quantize
return TensorParallelHead(
get_linear(weight, bias=None, quantize=quantize),
process_group=weights.process_group,
should_gather=should_gather,
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if not self.should_gather:
return super().forward(input)
world_size = self.process_group.size()
if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
out_dim = self.linear.weight.shape[0]
if input.shape[0] == 1:
world_out = input.new_empty(1, out_dim * world_size)
local_out = input.new_empty(1, out_dim)
gather_input = local_out
else:
world_out = input.new_empty(out_dim * world_size, input.shape[0])
gather_input = input.new_empty(out_dim, input.shape[0])
local_out = gather_input.T
torch.mm(input, self.linear.weight.T, out=local_out)
torch.distributed.all_gather_into_tensor(
world_out, gather_input, group=self.process_group
)
if input.shape[0] == 1:
return world_out
return world_out.T
output = super().forward(input)
world_output = [
torch.empty_like(output) for _ in range(self.process_group.size())
]
torch.distributed.all_gather(world_output, output, group=self.process_group)
world_output = torch.cat(world_output, dim=-1)
return world_output
class TensorParallelColumnLinear(SuperLayer):
@classmethod
def load_qkv(cls, config, prefix: str, weights, bias: bool):
"""Specific method when the QKV was joined after the fact"""
weight = weights.get_weights_col_packed_qkv(
prefix, quantize=config.quantize
)
if bias:
raise NotImplementedError("packed_qkv only implemented for baichuan")
else:
bias = None
linear = get_linear(weight, bias, config.quantize)
return cls(linear)
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
return cls.load_multi(config, [prefix], weights, bias, dim=0)
@classmethod
def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
weight = weights.get_multi_weights_col(
prefixes, quantize=config.quantize, dim=dim
)
if bias:
b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
bias = torch.cat(b, dim=dim)
else:
bias = None
linear = get_linear(weight, bias, config.quantize)
return cls(linear)
class TensorParallelRowLinear(SuperLayer):
def __init__(self, linear, process_group):
super().__init__(linear)
self.process_group = process_group
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
if bias and weights.process_group.rank() == 0:
# Rank is only on the first rank process
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return cls(
get_linear(weight, bias, config.quantize),
process_group=weights.process_group,
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
out = super().forward(input)
if self.process_group.size() > 1:
torch.distributed.all_reduce(out, group=self.process_group)
return out
class TensorParallelEmbedding(nn.Module):
def __init__(self, prefix: str, weights, reduce=True):
super().__init__()
weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
num_embeddings = weights.get_shape(f"{prefix}.weight")[0]
process_group = weights.process_group
world_size = process_group.size()
rank = process_group.rank()
block_size = num_embeddings // world_size
self.min_id = rank * block_size
self.max_id = min(num_embeddings, (rank + 1) * block_size)
self.null_idx = block_size
self.process_group = weights.process_group
self.reduce = reduce
"""Additional 0 entry used for masking"""
self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
def forward(self, input: torch.Tensor) -> torch.Tensor:
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
# translate for [0, self.max_id - self.min_id[
input = torch.where(
(self.min_id > input) | (input >= self.max_id),
self.null_idx,
input - self.min_id,
)
out = torch.nn.functional.embedding(input, self.weight)
if self.reduce and self.process_group.size() > 1:
torch.distributed.all_reduce(out, group=self.process_group)
return out
try:
import dropout_layer_norm
class FastLayerNorm(nn.LayerNorm):
def forward(self, hidden_states, residual=None):
if hidden_states.shape[-1] > 8192:
if residual is not None:
hidden_states += residual
residual = hidden_states
return super(FastLayerNorm, self).forward(hidden_states), residual
else:
(
normed_hidden_states,
residual,
*rest,
) = dropout_layer_norm.dropout_add_ln_fwd(
hidden_states,
residual,
self.weight,
self.bias,
None,
None,
None,
None,
0.0,
self.eps,
1.0,
0,
None,
False,
False,
)
if residual is None:
residual = hidden_states
return normed_hidden_states, residual
except ImportError:
pass
try:
from flash_attn.layers.rotary import RotaryEmbedding
import rotary_emb
def _create_inv_freq(dim, base, device):
inv_freq = 1.0 / (
base
** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
)
return inv_freq
def _get_rope_config(config):
if os.getenv("ROPE_SCALING", None) is not None:
rope_scaling = {"type": os.environ["ROPE_SCALING"], "factor": float(os.environ["ROPE_FACTOR"])}
return rope_scaling
return getattr(config, "rope_scaling", None)
class PositionRotaryEmbedding(nn.Module):
def __init__(self, inv_freq, scaling_factor):
super().__init__()
self.inv_freq = inv_freq
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
self.scaling_factor = scaling_factor
self.dynamic_args = None
@classmethod
def static(cls, config, dim, base, device):
inv_freq = _create_inv_freq(dim, base, device)
scaling_factor = None
rope_scaling = _get_rope_config(config)
if rope_scaling is not None:
scaling_factor = rope_scaling["factor"]
if rope_scaling["type"] == "linear":
pass
elif rope_scaling["type"] == "dynamic":
return DynamicPositionRotaryEmbedding(dim=dim, max_position_embeddings=config.max_position_embeddings, base=base, device=inv_freq.device, scaling_factor=scaling_factor)
else:
raise NotImplementedError(f"rope scaling type {rope_scaling['type']} is not implemented or invalid")
return cls(inv_freq, scaling_factor)
@classmethod
def load(cls, config, prefix, weights):
# XXX: Always load this in float32 !
dtype = weights.dtype
weights.dtype = torch.float32
inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
weights.dtype = dtype
scaling_factor = None
rope_scaling = _get_rope_config(config)
if rope_scaling is not None:
scaling_factor = rope_scaling["factor"]
if rope_scaling["type"] == "linear":
pass
elif rope_scaling["type"] == "dynamic":
return DynamicPositionRotaryEmbedding(dim=2*inv_freq.shape[0], max_position_embeddings=config.max_position_embeddings, base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor)
else:
raise NotImplementedError(f"rope scaling type {rope_scaling['type']} is not implemented or invalid")
return cls(inv_freq, scaling_factor)
def _update_cos_sin_cache(self, dtype, device, seqlen):
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if (
seqlen > self._seq_len_cached
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
):
self._seq_len_cached = seqlen
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
if self.scaling_factor is not None:
t /= self.scaling_factor
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
def get_cos_sin(
self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
):
"""
Return cos and sin for the asked position ids
"""
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
cos = torch.index_select(self._cos_cached, 0, position_ids)
sin = torch.index_select(self._sin_cached, 0, position_ids)
return cos.unsqueeze(1), sin.unsqueeze(1)
def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
rotary_dim = cos.shape[-1]
x1 = x[..., :rotary_dim]
x2 = x[..., rotary_dim : 2 * rotary_dim]
rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False)
return x
class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
inv_freq = _create_inv_freq(dim, base, device)
super().__init__(inv_freq, scaling_factor)
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
def _update_cos_sin_cache(self, dtype, device, seqlen):
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if (
seqlen > self._seq_len_cached
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
):
if seqlen > self.max_position_embeddings:
newbase = self.base * ((self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)) ** (self.dim / (self.dim - 2))
self.inv_freq = _create_inv_freq(self.dim, newbase, self.inv_freq.device)
self._seq_len_cached = seqlen
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
except ImportError:
pass