hf_text-generation-inference/clients/python/text_generation/client.py

492 lines
18 KiB
Python

import json
import requests
from aiohttp import ClientSession, ClientTimeout
from pydantic import ValidationError
from typing import Dict, Optional, List, AsyncIterator, Iterator
from text_generation.types import (
StreamResponse,
Response,
Request,
Parameters,
)
from text_generation.errors import parse_error
class Client:
"""Client to make calls to a text-generation-inference instance
Example:
```python
>>> from text_generation import Client
>>> client = Client("https://api-inference.huggingface.co/models/bigscience/bloomz")
>>> client.generate("Why is the sky blue?").generated_text
' Rayleigh scattering'
>>> result = ""
>>> for response in client.generate_stream("Why is the sky blue?"):
>>> if not response.token.special:
>>> result += response.token.text
>>> result
' Rayleigh scattering'
```
"""
def __init__(
self,
base_url: str,
headers: Optional[Dict[str, str]] = None,
cookies: Optional[Dict[str, str]] = None,
timeout: int = 10,
):
"""
Args:
base_url (`str`):
text-generation-inference instance base url
headers (`Optional[Dict[str, str]]`):
Additional headers
cookies (`Optional[Dict[str, str]]`):
Cookies to include in the requests
timeout (`int`):
Timeout in seconds
"""
self.base_url = base_url
self.headers = headers
self.cookies = cookies
self.timeout = timeout
def generate(
self,
prompt: str,
do_sample: bool = False,
max_new_tokens: int = 20,
best_of: Optional[int] = None,
repetition_penalty: Optional[float] = None,
return_full_text: bool = False,
seed: Optional[int] = None,
stop_sequences: Optional[List[str]] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: bool = False,
decoder_input_details: bool = False,
) -> Response:
"""
Given a prompt, generate the following text
Args:
prompt (`str`):
Input text
do_sample (`bool`):
Activate logits sampling
max_new_tokens (`int`):
Maximum number of generated tokens
best_of (`int`):
Generate best_of sequences and return the one if the highest token logprobs
repetition_penalty (`float`):
The parameter for repetition penalty. 1.0 means no penalty. See [this
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
return_full_text (`bool`):
Whether to prepend the prompt to the generated text
seed (`int`):
Random sampling seed
stop_sequences (`List[str]`):
Stop generating tokens if a member of `stop_sequences` is generated
temperature (`float`):
The value used to module the logits distribution.
top_k (`int`):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation.
truncate (`int`):
Truncate inputs tokens to the given size
typical_p (`float`):
Typical Decoding mass
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
watermark (`bool`):
Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
decoder_input_details (`bool`):
Return the decoder input token logprobs and ids
Returns:
Response: generated response
"""
# Validate parameters
parameters = Parameters(
best_of=best_of,
details=True,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
return_full_text=return_full_text,
seed=seed,
stop=stop_sequences if stop_sequences is not None else [],
temperature=temperature,
top_k=top_k,
top_p=top_p,
truncate=truncate,
typical_p=typical_p,
watermark=watermark,
decoder_input_details=decoder_input_details,
)
request = Request(inputs=prompt, stream=False, parameters=parameters)
resp = requests.post(
self.base_url,
json=request.dict(),
headers=self.headers,
cookies=self.cookies,
timeout=self.timeout,
)
payload = resp.json()
if resp.status_code != 200:
raise parse_error(resp.status_code, payload)
return Response(**payload[0])
def generate_stream(
self,
prompt: str,
do_sample: bool = False,
max_new_tokens: int = 20,
repetition_penalty: Optional[float] = None,
return_full_text: bool = False,
seed: Optional[int] = None,
stop_sequences: Optional[List[str]] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: bool = False,
) -> Iterator[StreamResponse]:
"""
Given a prompt, generate the following stream of tokens
Args:
prompt (`str`):
Input text
do_sample (`bool`):
Activate logits sampling
max_new_tokens (`int`):
Maximum number of generated tokens
repetition_penalty (`float`):
The parameter for repetition penalty. 1.0 means no penalty. See [this
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
return_full_text (`bool`):
Whether to prepend the prompt to the generated text
seed (`int`):
Random sampling seed
stop_sequences (`List[str]`):
Stop generating tokens if a member of `stop_sequences` is generated
temperature (`float`):
The value used to module the logits distribution.
top_k (`int`):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation.
truncate (`int`):
Truncate inputs tokens to the given size
typical_p (`float`):
Typical Decoding mass
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
watermark (`bool`):
Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
Returns:
Iterator[StreamResponse]: stream of generated tokens
"""
# Validate parameters
parameters = Parameters(
best_of=None,
details=True,
decoder_input_details=False,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
return_full_text=return_full_text,
seed=seed,
stop=stop_sequences if stop_sequences is not None else [],
temperature=temperature,
top_k=top_k,
top_p=top_p,
truncate=truncate,
typical_p=typical_p,
watermark=watermark,
)
request = Request(inputs=prompt, stream=True, parameters=parameters)
resp = requests.post(
self.base_url,
json=request.dict(),
headers=self.headers,
cookies=self.cookies,
timeout=self.timeout,
stream=True,
)
if resp.status_code != 200:
raise parse_error(resp.status_code, resp.json())
# Parse ServerSentEvents
for byte_payload in resp.iter_lines():
# Skip line
if byte_payload == b"\n":
continue
payload = byte_payload.decode("utf-8")
# Event data
if payload.startswith("data:"):
# Decode payload
json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
# Parse payload
try:
response = StreamResponse(**json_payload)
except ValidationError:
# If we failed to parse the payload, then it is an error payload
raise parse_error(resp.status_code, json_payload)
yield response
class AsyncClient:
"""Asynchronous Client to make calls to a text-generation-inference instance
Example:
```python
>>> from text_generation import AsyncClient
>>> client = AsyncClient("https://api-inference.huggingface.co/models/bigscience/bloomz")
>>> response = await client.generate("Why is the sky blue?")
>>> response.generated_text
' Rayleigh scattering'
>>> result = ""
>>> async for response in client.generate_stream("Why is the sky blue?"):
>>> if not response.token.special:
>>> result += response.token.text
>>> result
' Rayleigh scattering'
```
"""
def __init__(
self,
base_url: str,
headers: Optional[Dict[str, str]] = None,
cookies: Optional[Dict[str, str]] = None,
timeout: int = 10,
):
"""
Args:
base_url (`str`):
text-generation-inference instance base url
headers (`Optional[Dict[str, str]]`):
Additional headers
cookies (`Optional[Dict[str, str]]`):
Cookies to include in the requests
timeout (`int`):
Timeout in seconds
"""
self.base_url = base_url
self.headers = headers
self.cookies = cookies
self.timeout = ClientTimeout(timeout * 60)
async def generate(
self,
prompt: str,
do_sample: bool = False,
max_new_tokens: int = 20,
best_of: Optional[int] = None,
repetition_penalty: Optional[float] = None,
return_full_text: bool = False,
seed: Optional[int] = None,
stop_sequences: Optional[List[str]] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: bool = False,
decoder_input_details: bool = False,
) -> Response:
"""
Given a prompt, generate the following text asynchronously
Args:
prompt (`str`):
Input text
do_sample (`bool`):
Activate logits sampling
max_new_tokens (`int`):
Maximum number of generated tokens
best_of (`int`):
Generate best_of sequences and return the one if the highest token logprobs
repetition_penalty (`float`):
The parameter for repetition penalty. 1.0 means no penalty. See [this
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
return_full_text (`bool`):
Whether to prepend the prompt to the generated text
seed (`int`):
Random sampling seed
stop_sequences (`List[str]`):
Stop generating tokens if a member of `stop_sequences` is generated
temperature (`float`):
The value used to module the logits distribution.
top_k (`int`):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation.
truncate (`int`):
Truncate inputs tokens to the given size
typical_p (`float`):
Typical Decoding mass
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
watermark (`bool`):
Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
decoder_input_details (`bool`):
Return the decoder input token logprobs and ids
Returns:
Response: generated response
"""
# Validate parameters
parameters = Parameters(
best_of=best_of,
details=True,
decoder_input_details=decoder_input_details,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
return_full_text=return_full_text,
seed=seed,
stop=stop_sequences if stop_sequences is not None else [],
temperature=temperature,
top_k=top_k,
top_p=top_p,
truncate=truncate,
typical_p=typical_p,
watermark=watermark,
)
request = Request(inputs=prompt, stream=False, parameters=parameters)
async with ClientSession(
headers=self.headers, cookies=self.cookies, timeout=self.timeout
) as session:
async with session.post(self.base_url, json=request.dict()) as resp:
payload = await resp.json()
if resp.status != 200:
raise parse_error(resp.status, payload)
return Response(**payload[0])
async def generate_stream(
self,
prompt: str,
do_sample: bool = False,
max_new_tokens: int = 20,
repetition_penalty: Optional[float] = None,
return_full_text: bool = False,
seed: Optional[int] = None,
stop_sequences: Optional[List[str]] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: bool = False,
) -> AsyncIterator[StreamResponse]:
"""
Given a prompt, generate the following stream of tokens asynchronously
Args:
prompt (`str`):
Input text
do_sample (`bool`):
Activate logits sampling
max_new_tokens (`int`):
Maximum number of generated tokens
repetition_penalty (`float`):
The parameter for repetition penalty. 1.0 means no penalty. See [this
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
return_full_text (`bool`):
Whether to prepend the prompt to the generated text
seed (`int`):
Random sampling seed
stop_sequences (`List[str]`):
Stop generating tokens if a member of `stop_sequences` is generated
temperature (`float`):
The value used to module the logits distribution.
top_k (`int`):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation.
truncate (`int`):
Truncate inputs tokens to the given size
typical_p (`float`):
Typical Decoding mass
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
watermark (`bool`):
Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
Returns:
AsyncIterator[StreamResponse]: stream of generated tokens
"""
# Validate parameters
parameters = Parameters(
best_of=None,
details=True,
decoder_input_details=False,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
return_full_text=return_full_text,
seed=seed,
stop=stop_sequences if stop_sequences is not None else [],
temperature=temperature,
top_k=top_k,
top_p=top_p,
truncate=truncate,
typical_p=typical_p,
watermark=watermark,
)
request = Request(inputs=prompt, stream=True, parameters=parameters)
async with ClientSession(
headers=self.headers, cookies=self.cookies, timeout=self.timeout
) as session:
async with session.post(self.base_url, json=request.dict()) as resp:
if resp.status != 200:
raise parse_error(resp.status, await resp.json())
# Parse ServerSentEvents
async for byte_payload in resp.content:
# Skip line
if byte_payload == b"\n":
continue
payload = byte_payload.decode("utf-8")
# Event data
if payload.startswith("data:"):
# Decode payload
json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
# Parse payload
try:
response = StreamResponse(**json_payload)
except ValidationError:
# If we failed to parse the payload, then it is an error payload
raise parse_error(resp.status, json_payload)
yield response