preemo_text-generation-infe.../server/text_generation_server/models/flash_causal_lm.py

1035 lines
36 KiB
Python
Raw Normal View History

import math
import itertools
2023-04-03 11:06:42 -06:00
import torch
import torch.distributed
import numpy as np
2023-04-03 11:06:42 -06:00
from dataclasses import dataclass
from loguru import logger
2023-04-03 11:06:42 -06:00
from opentelemetry import trace
from transformers import PreTrainedTokenizerBase
from typing import Optional, Tuple, List, Type, Union, Dict
2023-04-03 11:06:42 -06:00
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
2023-04-03 11:06:42 -06:00
tracer = trace.get_tracer(__name__)
BLOCK_SIZE = 16
# Will be set in warmup
CACHE_MANAGER: Optional["CacheManager"] = None
class CacheManager:
def __init__(
self,
num_blocks: int,
num_layers: int,
num_heads: int,
head_size: int,
dtype: torch.dtype,
device: torch.device,
):
self.block_size = BLOCK_SIZE
element_size = torch.tensor([], dtype=dtype).element_size()
x = self.block_size // element_size
self.kv_cache = [
(
torch.empty(
(num_blocks, num_heads, head_size // x, self.block_size, x),
dtype=dtype,
device=device,
),
torch.empty(
(num_blocks, num_heads, head_size, self.block_size),
dtype=dtype,
device=device,
),
)
for _ in range(num_layers)
]
self.free_block_mask = torch.ones(num_blocks, dtype=torch.int32, device="cpu")
self.slots = torch.arange(
0, num_blocks * self.block_size, dtype=torch.int32
).view(num_blocks, self.block_size)
def allocate(self, batch: "FlashCausalLMBatch"):
# Get free blocks indices by finding values in mask that are not set to 0
free_block_indices = self.free_block_mask.nonzero()
assert (
len(free_block_indices) >= batch.blocks
), f"Out of available cache blocks: asked {batch.blocks}, only {len(free_block_indices)} free blocks"
# Slice by the number of required blocks
block_indices = free_block_indices[: batch.blocks]
block_indices = block_indices.flatten()
# Padded block tables
block_tables_tensor = torch.zeros(
(len(batch), batch.max_blocks), dtype=torch.int32
)
# Allocate paged attention blocks
cumulative_blocks = 0
slots = []
block_tables = []
for i, (needed_blocks, needed_slots) in enumerate(batch.needed_blocks_slots):
# Get allocated blocks for this sequence
allocated_blocks = block_indices[
cumulative_blocks : cumulative_blocks + needed_blocks
]
# Get slots for the allocated blocks
allocated_slots = self.slots[allocated_blocks].flatten()[:needed_slots]
slots.append(allocated_slots)
block_tables.append(allocated_blocks.tolist())
block_tables_tensor[i, :needed_blocks] = allocated_blocks
cumulative_blocks += needed_blocks
batch.needed_blocks_slots = None
batch.block_tables = block_tables
batch.block_tables_tensor = block_tables_tensor.to(batch.input_ids.device)
batch.slots = torch.concat(slots).to(batch.input_ids.device)
# Allocate the required number of blocks by setting the mask to 0
self.free_block_mask[block_indices] = 0
def free(self, block_indices: Optional[List[int]]):
if block_indices is not None and block_indices:
# Reset mask
self.free_block_mask[block_indices] = 1
2023-04-03 11:06:42 -06:00
@dataclass
class FlashCausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
# request id -> idx in list mapping
requests_idx_mapping: Dict[int, int]
2023-04-03 11:06:42 -06:00
# Decoder values
input_ids: torch.Tensor
position_ids: torch.Tensor
# Flash Attention values
# tensor of length b containing the cumulative sequence lengths of the sequences in the batch, only used in prefill
cu_seqlen_prefill: Optional[torch.Tensor]
# Paged Attention values
# Set when creating the batch
# CPU tensor of length b indicating the start of each sequence in slots
start_slots: torch.Tensor
# tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode
slot_indices: torch.Tensor
# List of tuple of ints representing the number of blocks and slots needed by each sequence
needed_blocks_slots: Optional[List[Tuple[int, int]]]
# Set in prefill by the CacheManager
# list of length b of list of length s_i // block_size
block_tables: Optional[List[List[int]]]
# tensor of size [b, max_seqlen // block_size] holding the paged attention block tables for all sequences
block_tables_tensor: Optional[torch.Tensor]
# tensor of length \sum_{i=0}^{b} max_s_i holding the paged attention slots for all sequences
slots: Optional[torch.Tensor]
2023-04-03 11:06:42 -06:00
max_seqlen: int
# Prefill metadata tensors to efficiently compute logprobs
prefill_head_indices: Optional[torch.Tensor]
prefill_next_token_indices: Optional[torch.tensor]
prefill_cu_outlens: Optional[List[int]]
2023-04-03 11:06:42 -06:00
# All tokens
all_input_ids: List[List[int]]
all_input_ids_tensor: torch.Tensor
2023-04-03 11:06:42 -06:00
# Lengths of all generations present in the batch
input_lengths: List[int]
input_lengths_tensor: torch.Tensor
prefix_offsets: List[Optional[int]]
read_offsets: List[Optional[int]]
2023-04-03 11:06:42 -06:00
# Generation helpers
next_token_chooser: HeterogeneousNextTokenChooser
2023-04-03 11:06:42 -06:00
stopping_criterias: List[StoppingCriteria]
# Number of blocks in this batch
blocks: int
# Maximum number of blocks
max_blocks: int
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.id for r in self.requests],
size=len(self),
max_tokens=self.blocks * BLOCK_SIZE,
2023-04-03 11:06:42 -06:00
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
2023-04-03 11:06:42 -06:00
device: torch.device,
) -> "FlashCausalLMBatch":
batch_inputs = []
max_truncation = 0
for r in pb.requests:
batch_inputs.append(r.inputs)
max_truncation = max(max_truncation, r.truncate)
batch_tokenized_inputs = tokenizer(
batch_inputs, truncation=True, max_length=max_truncation
)["input_ids"]
2023-04-03 11:06:42 -06:00
position_ids = []
cu_seqlen_prefill = [0]
needed_blocks_slots = []
start_slots = []
slot_indices = []
2023-04-03 11:06:42 -06:00
input_lengths = []
prefix_offsets = []
read_offsets = []
2023-04-03 11:06:42 -06:00
all_input_ids = []
requests_idx_mapping = {}
2023-04-03 11:06:42 -06:00
all_prefill_logprobs = True
no_prefill_logprobs = True
prefill_head_indices = []
prefill_next_token_indices = []
prefill_cu_outlens = [0]
next_token_chooser_parameters = []
2023-04-03 11:06:42 -06:00
stopping_criterias = []
# Cumulative length
cumulative_length = 0
cumulative_max_length = 0
prefill_out_cumulative_length = 0
2023-04-03 11:06:42 -06:00
blocks = 0
max_seqlen = 0
max_length = 0
max_blocks = 0
2023-04-03 11:06:42 -06:00
# Parse batch
for i, (r, tokenized_input) in enumerate(
zip(pb.requests, batch_tokenized_inputs)
):
# request id -> idx in list mapping
requests_idx_mapping[r.id] = i
tokenized_input = tokenized_input[-r.truncate :]
2023-04-03 11:06:42 -06:00
input_length = len(tokenized_input)
input_lengths.append(input_length)
prefix_offsets.append(input_length - 5)
read_offsets.append(input_length)
2023-04-03 11:06:42 -06:00
all_input_ids.append(tokenized_input)
2023-04-03 11:06:42 -06:00
# Position ids
request_position_ids = torch.arange(0, input_length, dtype=torch.int32)
position_ids.append(request_position_ids)
2023-04-03 11:06:42 -06:00
# Add cumulative lengths of all previous inputs
cu_seqlen_prefill.append(cumulative_length + input_length)
2023-04-03 11:06:42 -06:00
next_token_chooser_parameters.append(r.parameters)
2023-04-03 11:06:42 -06:00
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
max_new_tokens = stopping_criteria.max_new_tokens
2023-04-03 11:06:42 -06:00
stopping_criterias.append(stopping_criteria)
# Paged attention
# Remove one as the first token des not have a past
total_tokens = input_length + max_new_tokens - 1
needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
blocks += needed_blocks
needed_blocks_slots.append((needed_blocks, total_tokens))
start_slots.append(cumulative_max_length)
request_slot_indices = torch.arange(
cumulative_max_length,
cumulative_max_length + input_length,
dtype=torch.int64,
)
slot_indices.append(request_slot_indices)
all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs
if r.prefill_logprobs:
prefill_head_indices.append(request_position_ids + cumulative_length)
prefill_next_token_indices.append(
prefill_out_cumulative_length + input_length - 1
)
prefill_cu_outlens.append(prefill_out_cumulative_length + input_length)
prefill_out_cumulative_length += input_length
else:
prefill_head_indices.append(
torch.tensor(
[cumulative_length + input_length - 1], dtype=torch.int32
)
)
prefill_next_token_indices.append(prefill_out_cumulative_length)
prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
prefill_out_cumulative_length += 1
2023-04-03 11:06:42 -06:00
# Update
cumulative_length += input_length
cumulative_max_length += total_tokens
max_seqlen = max(max_seqlen, input_length)
max_blocks = max(max_blocks, needed_blocks)
max_length = max(max_length, input_length + max_new_tokens)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype, device
)
start_slots = torch.tensor(start_slots, dtype=torch.int64)
# Padded all_input_ids_tensor
all_input_ids_tensor = np.zeros(
(len(all_input_ids), max_length), dtype=np.int64
)
for i, input_ids in enumerate(all_input_ids):
all_input_ids_tensor[i, : len(input_ids)] = input_ids
2023-04-03 11:06:42 -06:00
# Create tensors on device
all_input_ids_tensor = torch.tensor(
all_input_ids_tensor, dtype=torch.int64, device=device
)
if len(pb.requests) > 1:
input_ids = np.concatenate(all_input_ids, dtype=np.int64)
position_ids = torch.cat(position_ids)
slot_indices = torch.cat(slot_indices)
else:
input_ids = all_input_ids[0]
position_ids = position_ids[0]
slot_indices = slot_indices[0]
cu_seqlen_prefill = torch.tensor(
cu_seqlen_prefill, device=device, dtype=torch.int32
)
position_ids = position_ids.to(device)
slot_indices = slot_indices.to(device)
input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
input_lengths_tensor = torch.tensor(
input_lengths, dtype=torch.int32, device=device
)
if all_prefill_logprobs:
prefill_head_indices = None
prefill_next_token_indices = cu_seqlen_prefill[1:] - 1
elif no_prefill_logprobs:
prefill_head_indices = cu_seqlen_prefill[1:] - 1
prefill_next_token_indices = None
else:
prefill_head_indices = torch.tensor(
torch.cat(prefill_head_indices), dtype=torch.int64, device=device
)
prefill_next_token_indices = torch.tensor(
prefill_next_token_indices, dtype=torch.int64, device=device
)
2023-04-03 11:06:42 -06:00
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
2023-04-03 11:06:42 -06:00
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
start_slots=start_slots,
slot_indices=slot_indices,
needed_blocks_slots=needed_blocks_slots,
block_tables=None,
block_tables_tensor=None,
slots=None,
2023-04-03 11:06:42 -06:00
max_seqlen=max_seqlen,
prefill_head_indices=prefill_head_indices,
prefill_next_token_indices=prefill_next_token_indices,
prefill_cu_outlens=prefill_cu_outlens,
2023-04-03 11:06:42 -06:00
input_lengths=input_lengths,
input_lengths_tensor=input_lengths_tensor,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
2023-04-03 11:06:42 -06:00
all_input_ids=all_input_ids,
all_input_ids_tensor=all_input_ids_tensor,
next_token_chooser=next_token_chooser,
2023-04-03 11:06:42 -06:00
stopping_criterias=stopping_criterias,
blocks=blocks,
max_blocks=max_blocks,
2023-04-03 11:06:42 -06:00
)
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int]) -> "FlashCausalLMBatch":
if len(request_ids) == 0:
raise ValueError("Batch must have at least one request")
# We assume that if len(requests) == len(self) then the requests are the same
if len(request_ids) == len(self):
return self
device = self.input_ids.device
# New values after filtering
requests_idx_mapping = {}
# Used to index into tensors
indices = []
# slots to keep after filtering
slot_filtering_indices = torch.zeros(
self.slots.shape[0], dtype=torch.bool, device=device
)
# Create on CPU to only move to GPU once instead of at every copy
slot_indices = torch.empty(len(request_ids), dtype=torch.int64)
max_seqlen = 0
requests = []
start_slots = []
block_tables = []
all_input_ids = []
2023-04-03 11:06:42 -06:00
input_lengths = []
prefix_offsets = []
read_offsets = []
2023-04-03 11:06:42 -06:00
stopping_criterias = []
blocks = 0
max_blocks = 0
# Cumulative length
cumulative_max_length = 0
for i, request_id in enumerate(request_ids):
idx = self.requests_idx_mapping[request_id]
indices.append(idx)
requests_idx_mapping[request_id] = i
requests.append(self.requests[idx])
# Get length
request_input_length = self.input_lengths[idx]
max_seqlen = max(max_seqlen, request_input_length)
all_input_ids.append(self.all_input_ids[idx])
input_lengths.append(request_input_length)
prefix_offsets.append(self.prefix_offsets[idx])
read_offsets.append(self.read_offsets[idx])
stopping_criteria = self.stopping_criterias[idx]
stopping_criterias.append(stopping_criteria)
remaining_tokens = (
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
)
request_block_table = self.block_tables[idx]
blocks += len(request_block_table)
block_tables.append(request_block_table)
start_slots.append(cumulative_max_length)
# Copy to tensor (CPU)
slot_indices[i] = cumulative_max_length + request_input_length - 1
# Set slice
slot_filtering_indices[
self.start_slots[idx] : self.start_slots[idx]
+ request_input_length
+ remaining_tokens
- 1
] = True
cumulative_max_length += request_input_length + remaining_tokens - 1
max_blocks = max(max_blocks, len(request_block_table))
global CACHE_MANAGER
block_indices_to_free = []
# Iterate on all requests
for i, r in enumerate(self.requests):
# Filter requests that are not part of the new batch
if r.id not in requests_idx_mapping.keys():
block_indices_to_free.extend(self.block_tables[i])
# Free blocks
CACHE_MANAGER.free(block_indices_to_free)
# Needed to avoid dropping blocks when the batches will go out of scope
self.block_tables = None
# Index into tensors
input_ids = self.input_ids[indices]
position_ids = self.position_ids[indices]
all_input_ids_tensor = self.all_input_ids_tensor[indices]
block_tables_tensor = self.block_tables_tensor[indices]
input_lengths_tensor = self.input_lengths_tensor[indices]
slots = self.slots[slot_filtering_indices]
next_token_chooser = self.next_token_chooser.filter(indices)
start_slots = torch.tensor(start_slots, dtype=torch.int64)
# Move to GPU now that we have the whole tensor
slot_indices = slot_indices.to(device)
return FlashCausalLMBatch(
batch_id=self.batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=None,
start_slots=start_slots,
slot_indices=slot_indices,
needed_blocks_slots=None,
block_tables=block_tables,
block_tables_tensor=block_tables_tensor,
slots=slots,
max_seqlen=max_seqlen,
prefill_head_indices=None,
prefill_next_token_indices=None,
prefill_cu_outlens=None,
input_lengths=input_lengths,
input_lengths_tensor=input_lengths_tensor,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
all_input_ids=all_input_ids,
all_input_ids_tensor=all_input_ids_tensor,
next_token_chooser=next_token_chooser,
stopping_criterias=stopping_criterias,
blocks=blocks,
max_blocks=max_blocks,
)
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
# Batch attributes
requests = []
requests_idx_mapping = {}
blocks = 0
total_batch_size = 0
total_slots = 0
max_blocks = 0
max_length = 0
max_seqlen = 0
for b in batches:
total_batch_size += len(b)
total_slots += len(b.slots)
blocks += b.blocks
max_blocks = max(max_blocks, b.max_blocks)
max_seqlen = max(max_seqlen, b.max_seqlen)
max_length = max(
max_length,
max(
input_length
+ stopping_criteria.max_new_tokens
- stopping_criteria.current_tokens
for input_length, stopping_criteria in zip(
b.input_lengths, b.stopping_criterias
)
),
)
input_ids = batches[0].input_ids.new_empty(total_batch_size)
position_ids = batches[0].position_ids.new_empty(total_batch_size)
slots = batches[0].slots.new_empty(total_slots)
slot_indices = batches[0].slot_indices.new_empty(total_batch_size)
input_lengths_tensor = batches[0].input_lengths_tensor.new_empty(
total_batch_size
)
block_tables_tensor = batches[0].block_tables_tensor.new_zeros(
(total_batch_size, max_blocks)
)
all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros(
(total_batch_size, max_length)
)
2023-04-03 11:06:42 -06:00
start_slots = []
block_tables = []
all_input_ids = []
input_lengths = []
prefix_offsets = []
read_offsets = []
next_token_chooser_parameters = []
stopping_criterias = []
2023-04-03 11:06:42 -06:00
# Cumulative length
cumulative_batch_size = 0
cumulative_slots = 0
2023-04-03 11:06:42 -06:00
for i, batch in enumerate(batches):
requests.extend(batch.requests)
if i == 0:
requests_idx_mapping = batch.requests_idx_mapping
else:
# We need to offset the mapping for each batch by the cumulative batch size
for k, v in batch.requests_idx_mapping.items():
requests_idx_mapping[k] = v + cumulative_batch_size
start_index = cumulative_batch_size
end_index = cumulative_batch_size + len(batch)
slots_start_index = cumulative_slots
slots_end_index = cumulative_slots + len(batch.slots)
# Copy tensors (GPU)
input_ids[start_index:end_index] = batch.input_ids
position_ids[start_index:end_index] = batch.position_ids
slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots
input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor
slots[slots_start_index:slots_end_index] = batch.slots
all_input_ids_tensor[
start_index:end_index, : batch.all_input_ids_tensor.shape[1]
] = batch.all_input_ids_tensor[:, :max_length]
block_tables_tensor[
start_index:end_index, : batch.block_tables_tensor.shape[1]
] = batch.block_tables_tensor[:, :max_blocks]
start_slots.append(batch.start_slots + cumulative_slots)
block_tables.extend(batch.block_tables)
all_input_ids.extend(batch.all_input_ids)
2023-04-03 11:06:42 -06:00
input_lengths.extend(batch.input_lengths)
prefix_offsets.extend(batch.prefix_offsets)
read_offsets.extend(batch.read_offsets)
next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
2023-04-03 11:06:42 -06:00
stopping_criterias.extend(batch.stopping_criterias)
# Update
cumulative_batch_size += len(batch)
cumulative_slots += len(batch.slots)
start_slots = torch.concat(start_slots)
2023-04-03 11:06:42 -06:00
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters,
dtype=batches[0].next_token_chooser.dtype,
device=batches[0].next_token_chooser.device,
)
# Needed to avoid dropping blocks when the batches will go out of scope
for b in batches:
b.block_tables = None
del b
2023-04-03 11:06:42 -06:00
return FlashCausalLMBatch(
batch_id=batches[0].batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
2023-04-03 11:06:42 -06:00
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=None,
start_slots=start_slots,
slot_indices=slot_indices,
needed_blocks_slots=None,
block_tables=block_tables,
block_tables_tensor=block_tables_tensor,
slots=slots,
2023-04-03 11:06:42 -06:00
max_seqlen=max_seqlen,
prefill_head_indices=None,
prefill_next_token_indices=None,
prefill_cu_outlens=None,
2023-04-03 11:06:42 -06:00
input_lengths=input_lengths,
input_lengths_tensor=input_lengths_tensor,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
2023-04-03 11:06:42 -06:00
all_input_ids=all_input_ids,
all_input_ids_tensor=all_input_ids_tensor,
next_token_chooser=next_token_chooser,
2023-04-03 11:06:42 -06:00
stopping_criterias=stopping_criterias,
blocks=blocks,
max_blocks=max_blocks,
2023-04-03 11:06:42 -06:00
)
def __del__(self):
if self.block_tables is not None and self.block_tables:
global CACHE_MANAGER
# Free blocks
CACHE_MANAGER.free(list(itertools.chain.from_iterable(self.block_tables)))
2023-04-03 11:06:42 -06:00
def __len__(self):
return len(self.requests)
class FlashCausalLM(Model):
def __init__(
self,
model: torch.nn.Module,
tokenizer: PreTrainedTokenizerBase,
num_layers: int,
num_kv_heads: int,
head_size: int,
dtype: torch.dtype,
device: torch.device,
rank: int = 0,
world_size: int = 1,
2023-04-03 11:06:42 -06:00
):
self.num_layers = num_layers
self.num_kv_heads = num_kv_heads
self.head_size = head_size
2023-04-03 11:06:42 -06:00
super(FlashCausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=False,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
2023-04-03 11:06:42 -06:00
)
@property
def batch_type(self) -> Type[FlashCausalLMBatch]:
return FlashCausalLMBatch
def warmup(self, batch: FlashCausalLMBatch):
global CACHE_MANAGER
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats(self.device)
try:
CACHE_MANAGER = CacheManager(
batch.blocks,
self.num_layers,
self.num_kv_heads,
self.head_size,
self.dtype,
self.device,
)
_, batch = self.generate_token(batch)
except Exception as e:
raise RuntimeError(
f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. "
f"You need to decrease `--max-batch-prefill-tokens`"
) from e
# Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm)
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
torch.cuda.synchronize(self.device)
peak_memory = torch.cuda.max_memory_reserved(self.device)
dtype_size = torch.tensor([], dtype=self.dtype).element_size()
cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size
total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size
total_gpu_memory = torch.cuda.get_device_properties(self.device).total_memory
# 0.98 to add some wiggle room
num_blocks = (
int((total_gpu_memory * 0.98 - peak_memory) // total_cache_size)
# Add batch.blocks as we allocated it above, so it is included in the peak memory.
+ batch.blocks
)
del CACHE_MANAGER
del batch
torch.cuda.empty_cache()
CACHE_MANAGER = CacheManager(
num_blocks,
self.num_layers,
self.num_kv_heads,
self.head_size,
self.dtype,
self.device,
)
return int(num_blocks * BLOCK_SIZE)
2023-04-03 11:06:42 -06:00
def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
return self.tokenizer.decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
2023-04-03 11:06:42 -06:00
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
2023-04-03 11:06:42 -06:00
max_s: int,
lm_head_indices: Optional[torch.Tensor] = None,
2023-04-03 11:06:42 -06:00
) -> Tuple[torch.Tensor, torch.Tensor]:
global CACHE_MANAGER
2023-04-03 11:06:42 -06:00
# Model Forward
return self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=CACHE_MANAGER.kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
2023-04-03 11:06:42 -06:00
max_s=max_s,
lm_head_indices=lm_head_indices,
2023-04-03 11:06:42 -06:00
)
@tracer.start_as_current_span("generate_token")
def generate_token(
self, batch: FlashCausalLMBatch
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
prefill = batch.cu_seqlen_prefill is not None
prefill_logprobs = batch.prefill_next_token_indices is not None
if batch.needed_blocks_slots:
# Allocate blocks to this batch
CACHE_MANAGER.allocate(batch)
try:
out = self.forward(
batch.input_ids,
batch.position_ids,
batch.cu_seqlen_prefill,
batch.block_tables_tensor,
batch.slots[batch.slot_indices],
batch.input_lengths_tensor,
batch.max_seqlen,
batch.prefill_head_indices,
)
except Exception as e:
del batch
raise e
2023-04-03 11:06:42 -06:00
if prefill:
next_token_logits = (
out[batch.prefill_next_token_indices] if prefill_logprobs else out
)
else:
next_token_logits = out
next_input_ids, next_token_logprobs = batch.next_token_chooser(
batch.all_input_ids_tensor[:, : batch.max_seqlen], next_token_logits
)
if prefill:
if len(batch) > 1 and prefill_logprobs:
# We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
# When batch == 1, we will just use the batch.input_ids values directly
prefill_tokens_indices = batch.input_ids.new_zeros(len(out))
next_position_ids = batch.position_ids.new_empty(len(batch))
batch.slot_indices = batch.slot_indices[batch.cu_seqlen_prefill[1:] - 1]
# We do not need cu_seqlen_prefill anymore
batch.cu_seqlen_prefill = None
else:
prefill_logprobs = None
next_position_ids = batch.position_ids
2023-04-03 11:06:42 -06:00
# Cumulative length
cumulative_length = 0
# Results
generations: List[Generation] = []
stopped = True
2023-04-03 11:06:42 -06:00
# Zipped iterator
iterator = zip(
batch.input_lengths,
batch.all_input_ids,
)
# We do two for loops as the first one can run completely asynchronously from the GPU while for the second
# one, we need to first do a GPU <-> CPU sync
# It is faster if we delay this sync for the maximum amount of time
2023-04-03 11:06:42 -06:00
# For each member of the batch
for i, (
input_length,
all_input_ids,
) in enumerate(iterator):
# Indexing metadata
2023-04-03 11:06:42 -06:00
start_index = cumulative_length
end_index = cumulative_length + input_length
if prefill:
# Indexing metadata
out_start_index = batch.prefill_cu_outlens[i]
out_end_index = batch.prefill_cu_outlens[i + 1]
out_length = out_end_index - out_start_index
# Initialize position_ids
# In decode, we do not need this as we can just increment position ids
next_position_ids[i] = batch.position_ids[end_index - 1]
# Used to gather prefill logprobs
# Copy batch.input_ids to prefill_token_indices
if prefill_logprobs:
if len(batch) > 1:
prefill_tokens_indices[
out_start_index : out_end_index - 1
] = batch.input_ids[start_index + 1 : start_index + out_length]
else:
# Set prefill_tokens_indices to the correct slice
prefill_tokens_indices = batch.input_ids[
start_index + 1 : start_index + out_length
]
batch.all_input_ids_tensor[i, input_length] = next_input_ids[i]
cumulative_length += input_length
# Set values in batch
batch.input_ids = next_input_ids
batch.position_ids = next_position_ids + 1
batch.input_lengths_tensor += 1
batch.slot_indices += 1
if prefill and prefill_logprobs:
# Get prefill logprobs
prefill_logprobs_tensor = torch.log_softmax(out, -1)
prefill_logprobs = torch.gather(
prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
)
# GPU <-> CPU sync
prefill_logprobs = prefill_logprobs.view(-1).tolist()
# GPU <-> CPU sync
next_token_logprobs = next_token_logprobs.tolist()
next_token_ids = batch.input_ids.tolist()
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
batch.prefix_offsets,
batch.read_offsets,
batch.stopping_criterias,
batch.all_input_ids,
batch.next_token_chooser.do_sample,
batch.next_token_chooser.seeds,
next_token_ids,
next_token_logprobs,
)
# For each member of the batch
for i, (
request,
input_length,
prefix_offset,
read_offset,
stopping_criteria,
all_input_ids,
do_sample,
seed,
next_token_id,
next_token_logprob,
) in enumerate(iterator):
2023-04-03 11:06:42 -06:00
# Append next token to all tokens
all_input_ids.append(next_token_id)
2023-04-03 11:06:42 -06:00
# Generated token
next_token_text, prefix_offset, read_offset = self.decode_token(
all_input_ids,
prefix_offset,
read_offset,
2023-04-03 11:06:42 -06:00
)
# Evaluate stopping criteria
stop, reason = stopping_criteria(
next_token_id,
2023-04-03 11:06:42 -06:00
next_token_text,
)
if not stop:
stopped = False
2023-04-03 11:06:42 -06:00
# Shard generations
# All generations will be appended in the rust sharded client
if i % self.world_size == self.rank:
if stop:
# Decode generated tokens
output_text = self.decode(
all_input_ids[-stopping_criteria.current_tokens :]
)
generated_text = GeneratedText(
output_text,
stopping_criteria.current_tokens,
reason,
seed if do_sample else None,
)
else:
generated_text = None
# Prefill
if prefill and request.prefill_logprobs:
out_start_index = batch.prefill_cu_outlens[i]
out_end_index = batch.prefill_cu_outlens[i + 1]
# Remove generated token to only have prefill and add nan for first prompt token
request_prefill_logprobs = [float("nan")] + prefill_logprobs[
out_start_index : out_end_index - 1
]
prefill_token_ids = all_input_ids[:-1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(
prefill_token_ids, request_prefill_logprobs, prefill_texts
)
else:
prefill_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id,
next_token_logprob,
next_token_text,
next_token_id in self.all_special_ids,
generated_text,
2023-04-03 11:06:42 -06:00
)
generations.append(generation)
2023-04-03 11:06:42 -06:00
# Update values
batch.input_lengths[i] = input_length + 1
batch.prefix_offsets[i] = prefix_offset
batch.read_offsets[i] = read_offset
batch.all_input_ids[i] = all_input_ids
if stopped:
del batch
# No need to return a batch if we know that all requests stopped
return generations, None
batch.prefill_cu_outlens = None
batch.prefill_head_indices = None
batch.prefill_next_token_indices = None
batch.max_seqlen = batch.max_seqlen + 1
return generations, batch