Wrapping completions and chat/completions endpoint (#2)
* rebase and squash commits on latest main * cargo fmt * fix: 2038y problem --------- Co-authored-by: michaelfeil <me@michaelfeil.eu>
This commit is contained in:
parent
f93012d59c
commit
012c917b6f
|
@ -39,7 +39,7 @@ RUN cargo build --release
|
|||
# Adapted from: https://github.com/pytorch/pytorch/blob/master/Dockerfile
|
||||
FROM debian:bullseye-slim as pytorch-install
|
||||
|
||||
ARG PYTORCH_VERSION=2.0.0
|
||||
ARG PYTORCH_VERSION=2.0.1
|
||||
ARG PYTHON_VERSION=3.9
|
||||
ARG CUDA_VERSION=11.8
|
||||
ARG MAMBA_VERSION=23.1.0-1
|
||||
|
|
|
@ -102,6 +102,184 @@
|
|||
}
|
||||
}
|
||||
},
|
||||
"/completions": {
|
||||
"post": {
|
||||
"tags": [
|
||||
"Text Generation Inference"
|
||||
],
|
||||
"summary": "Completion request. Enable stream of token by setting `stream == true`",
|
||||
"description": "Completion request. Enable stream of token by setting `stream == true`",
|
||||
"operationId": "completions_generate",
|
||||
"requestBody": {
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/CompatCompletionRequest"
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": true
|
||||
},
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "Generated Completion",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/CompletionsResponse"
|
||||
}
|
||||
},
|
||||
"text/event-stream": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/CompletionsResponse"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"422": {
|
||||
"description": "Input validation error",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Input validation error"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"424": {
|
||||
"description": "Generation Error",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Request failed during generation"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"429": {
|
||||
"description": "Model is overloaded",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Model is overloaded"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"500": {
|
||||
"description": "Incomplete generation",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Incomplete generation"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"/chat/completions": {
|
||||
"post": {
|
||||
"tags": [
|
||||
"Text Generation Inference"
|
||||
],
|
||||
"summary": "Generate tokens via Chat",
|
||||
"description": "Generate tokens via Chat",
|
||||
"operationId": "chatcompletions_generate",
|
||||
"requestBody": {
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/CompatChatCompletionRequest"
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": true
|
||||
},
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "Generated Completion",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ChatCompletionsResponse"
|
||||
}
|
||||
},
|
||||
"text/event-stream": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ChatCompletionsStreamResponse"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"422": {
|
||||
"description": "Input validation error",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Input validation error"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"424": {
|
||||
"description": "Generation Error",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Request failed during generation"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"429": {
|
||||
"description": "Model is overloaded",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Model is overloaded"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"500": {
|
||||
"description": "Incomplete generation",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Incomplete generation"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"/generate": {
|
||||
"post": {
|
||||
"tags": [
|
||||
|
|
|
@ -0,0 +1,610 @@
|
|||
/// Copyright 2023 Michael Feil, text-generation-inference contributors
|
||||
///
|
||||
/// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
/// you may not use this file except in compliance with the License.
|
||||
/// You may obtain a copy of the License at
|
||||
///
|
||||
/// http://www.apache.org/licenses/LICENSE-2.0
|
||||
///
|
||||
/// Unless required by applicable law or agreed to in writing, software
|
||||
/// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
/// See the License for the specific language governing permissions and
|
||||
/// limitations under the License.
|
||||
///
|
||||
|
||||
/// Converting generate to completions and chat/completions protocol
|
||||
use crate::{
|
||||
default_max_new_tokens, FinishReason, GenerateParameters, GenerateRequest, GenerateResponse,
|
||||
Info, OpenaiStreamType, StreamDetails, Token,
|
||||
};
|
||||
use axum::extract::Extension;
|
||||
use axum::response::sse::Event;
|
||||
use axum::Json;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use utoipa::ToSchema;
|
||||
use std::time::{SystemTime, UNIX_EPOCH};
|
||||
|
||||
#[derive(Clone, Debug, Deserialize, ToSchema)]
|
||||
pub(crate) struct CompatCompletionRequest {
|
||||
#[schema(example = "My name is Michael and I")]
|
||||
pub prompt: String,
|
||||
#[serde(default)]
|
||||
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
|
||||
pub best_of: Option<usize>,
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
exclusive_minimum = 0.0,
|
||||
nullable = true,
|
||||
default = "null",
|
||||
example = 0.5
|
||||
)]
|
||||
pub temperature: Option<f32>,
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
exclusive_minimum = -2.0,
|
||||
nullable = true,
|
||||
default = "null",
|
||||
example = 0.0
|
||||
)]
|
||||
pub presence_penalty: Option<f32>,
|
||||
// #[serde(default)]
|
||||
// #[schema(exclusive_minimum = 0, nullable = true, default = 1, example = 1)]
|
||||
// pub n: Option<i32>,
|
||||
#[serde(default)]
|
||||
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
|
||||
pub top_k: Option<i32>,
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
exclusive_minimum = 0.0,
|
||||
maximum = 1.0,
|
||||
nullable = true,
|
||||
default = "null",
|
||||
example = 0.95
|
||||
)]
|
||||
pub top_p: Option<f32>,
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
exclusive_minimum = 0.0,
|
||||
maximum = 1.0,
|
||||
nullable = true,
|
||||
default = "null",
|
||||
example = 0.95
|
||||
)]
|
||||
pub typical_p: Option<f32>,
|
||||
#[serde(default)]
|
||||
#[schema(default = "false", example = true)]
|
||||
pub do_sample: bool,
|
||||
#[serde(default = "default_max_new_tokens")]
|
||||
#[schema(exclusive_minimum = 0, exclusive_maximum = 512, default = "20")]
|
||||
pub max_tokens: u32,
|
||||
#[serde(default)]
|
||||
#[schema(nullable = true, default = "null", example = false)]
|
||||
pub echo: Option<bool>,
|
||||
#[serde(default)]
|
||||
#[schema(inline, max_items = 4, example = json ! (["photographer"]))]
|
||||
pub stop: Vec<String>,
|
||||
#[serde(default)]
|
||||
#[schema(nullable = true, default = "null", example = "null")]
|
||||
pub truncate: Option<usize>,
|
||||
#[serde(default)]
|
||||
#[schema(default = "false", example = true)]
|
||||
pub watermark: bool,
|
||||
#[serde(default)]
|
||||
#[schema(default = "false")]
|
||||
pub decoder_input_details: bool,
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
exclusive_minimum = 0,
|
||||
nullable = true,
|
||||
default = "null",
|
||||
example = "null"
|
||||
)]
|
||||
pub seed: Option<u64>,
|
||||
#[serde(default)]
|
||||
#[schema(default = "false")]
|
||||
pub stream: bool,
|
||||
}
|
||||
|
||||
impl From<CompatCompletionRequest> for GenerateRequest {
|
||||
fn from(req: CompatCompletionRequest) -> Self {
|
||||
let presence_penalty = req.presence_penalty;
|
||||
let presence_penalty = match presence_penalty {
|
||||
Some(presence_penalty) => Some((presence_penalty + 2.0) / 2.0),
|
||||
None => None,
|
||||
};
|
||||
Self {
|
||||
inputs: req.prompt,
|
||||
parameters: GenerateParameters {
|
||||
best_of: req.best_of,
|
||||
temperature: req.temperature,
|
||||
repetition_penalty: presence_penalty,
|
||||
top_k: req.top_k,
|
||||
top_p: req.top_p,
|
||||
typical_p: req.typical_p,
|
||||
do_sample: req.do_sample,
|
||||
max_new_tokens: req.max_tokens,
|
||||
return_full_text: req.echo,
|
||||
stop: req.stop,
|
||||
truncate: req.truncate,
|
||||
watermark: req.watermark,
|
||||
details: true,
|
||||
decoder_input_details: req.decoder_input_details,
|
||||
seed: req.seed,
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, ToSchema, Deserialize, Serialize)]
|
||||
pub(crate) enum ChatRole {
|
||||
#[serde(rename = "user")]
|
||||
User,
|
||||
#[serde(rename = "assistant")]
|
||||
Assistant,
|
||||
#[serde(rename = "system")]
|
||||
System,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, ToSchema)]
|
||||
pub(crate) struct ChatFormatterPrePost {
|
||||
pre: String,
|
||||
post: String,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, ToSchema)]
|
||||
pub(crate) struct ChatFormatter {
|
||||
user_template: ChatFormatterPrePost,
|
||||
assistant_template: ChatFormatterPrePost,
|
||||
system_template: ChatFormatterPrePost,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
|
||||
pub(crate) struct ChatMessage {
|
||||
#[schema(example = "user")]
|
||||
role: ChatRole,
|
||||
#[schema(example = "What is the capital of Bavaria?")]
|
||||
content: String,
|
||||
// user: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
|
||||
pub(crate) struct ChatDeltaStreamMessage {
|
||||
#[schema(example = "user")]
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub role: Option<ChatRole>,
|
||||
#[schema(example = "What is the capital of Bavaria?")]
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub content: Option<String>,
|
||||
// user: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Deserialize, ToSchema)]
|
||||
pub(crate) struct CompatChatCompletionRequest {
|
||||
pub messages: Vec<ChatMessage>,
|
||||
#[serde(default)]
|
||||
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
|
||||
pub best_of: Option<usize>,
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
exclusive_minimum = 0.0,
|
||||
nullable = true,
|
||||
default = "null",
|
||||
example = 0.5
|
||||
)]
|
||||
pub temperature: Option<f32>,
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
exclusive_minimum = -2.0,
|
||||
nullable = true,
|
||||
default = "null",
|
||||
example = 0.0
|
||||
)]
|
||||
pub presence_penalty: Option<f32>,
|
||||
// #[serde(default)]
|
||||
// #[schema(exclusive_minimum = 0, nullable = true, default = 1, example = 1)]
|
||||
// pub n: Option<u32>,
|
||||
#[serde(default)]
|
||||
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
|
||||
pub top_k: Option<i32>,
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
exclusive_minimum = 0.0,
|
||||
maximum = 1.0,
|
||||
nullable = true,
|
||||
default = "null",
|
||||
example = 0.95
|
||||
)]
|
||||
pub top_p: Option<f32>,
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
exclusive_minimum = 0.0,
|
||||
maximum = 1.0,
|
||||
nullable = true,
|
||||
default = "null",
|
||||
example = 0.95
|
||||
)]
|
||||
pub typical_p: Option<f32>,
|
||||
#[serde(default)]
|
||||
#[schema(default = "false", example = true)]
|
||||
pub do_sample: bool,
|
||||
#[serde(default = "default_max_new_tokens")]
|
||||
#[schema(exclusive_minimum = 0, exclusive_maximum = 512, default = "20")]
|
||||
pub max_tokens: u32,
|
||||
#[serde(default)]
|
||||
#[schema(nullable = true, default = "null", example = false)]
|
||||
pub echo: Option<bool>,
|
||||
#[serde(default)]
|
||||
#[schema(inline, max_items = 4, example = json ! (["photographer"]))]
|
||||
pub stop: Vec<String>,
|
||||
#[serde(default)]
|
||||
#[schema(nullable = true, default = "null", example = "null")]
|
||||
pub truncate: Option<usize>,
|
||||
#[serde(default)]
|
||||
#[schema(default = "false", example = true)]
|
||||
pub watermark: bool,
|
||||
#[serde(default)]
|
||||
#[schema(default = "false")]
|
||||
pub decoder_input_details: bool,
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
exclusive_minimum = 0,
|
||||
nullable = true,
|
||||
default = "null",
|
||||
example = "null"
|
||||
)]
|
||||
pub seed: Option<u64>,
|
||||
#[serde(default)]
|
||||
#[schema(default = "false")]
|
||||
pub stream: bool,
|
||||
// #[serde(default)]
|
||||
// #[schema(nullable = true, default = "null", example = "null")]
|
||||
// pub user: Option<String>,
|
||||
}
|
||||
|
||||
pub(crate) fn chat_to_generate_request(
|
||||
req: CompatChatCompletionRequest,
|
||||
formatter: ChatFormatter,
|
||||
) -> GenerateRequest {
|
||||
let mut prompt = String::from("");
|
||||
for m in req.messages {
|
||||
// let role = m.role
|
||||
let template = match m.role {
|
||||
ChatRole::Assistant => &formatter.assistant_template,
|
||||
ChatRole::System => &formatter.system_template,
|
||||
ChatRole::User => &formatter.user_template,
|
||||
};
|
||||
prompt.push_str(&template.pre);
|
||||
prompt.push_str(&m.content);
|
||||
prompt.push_str(&template.post);
|
||||
}
|
||||
let presence_penalty = req.presence_penalty;
|
||||
let presence_penalty = match presence_penalty {
|
||||
Some(presence_penalty) => Some((presence_penalty + 2.0) / 2.0),
|
||||
None => None,
|
||||
};
|
||||
|
||||
GenerateRequest {
|
||||
inputs: prompt,
|
||||
parameters: GenerateParameters {
|
||||
best_of: req.best_of,
|
||||
temperature: req.temperature,
|
||||
repetition_penalty: presence_penalty,
|
||||
top_k: req.top_k,
|
||||
top_p: req.top_p,
|
||||
typical_p: req.typical_p,
|
||||
do_sample: req.do_sample,
|
||||
max_new_tokens: req.max_tokens,
|
||||
return_full_text: req.echo,
|
||||
stop: req.stop,
|
||||
truncate: req.truncate,
|
||||
watermark: req.watermark,
|
||||
details: true,
|
||||
decoder_input_details: req.decoder_input_details,
|
||||
seed: req.seed,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, ToSchema)]
|
||||
pub(crate) struct Usage {
|
||||
#[schema(example = 1)]
|
||||
pub total_tokens: u32,
|
||||
#[schema(example = 1)]
|
||||
pub completion_tokens: u32,
|
||||
#[schema(example = 1)]
|
||||
pub prompt_tokens: u32,
|
||||
}
|
||||
|
||||
#[derive(Serialize, ToSchema)]
|
||||
pub(crate) struct CompletionChoices {
|
||||
#[schema(example = "test")]
|
||||
pub text: String,
|
||||
#[schema(example = "length")]
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub finish_reason: Option<FinishReason>,
|
||||
// pub generated_tokens: u32,
|
||||
// logprobs is not implemented, send None
|
||||
pub logprobs: Option<Vec<u32>>,
|
||||
#[schema(example = 0)]
|
||||
pub index: u32,
|
||||
}
|
||||
|
||||
#[derive(Serialize, ToSchema)]
|
||||
pub(crate) struct CompletionsResponse {
|
||||
#[schema(example = "cmpl-abcdefgehij1234")]
|
||||
pub id: String,
|
||||
#[schema(example = "text_completion")]
|
||||
pub object: String,
|
||||
#[schema(example = 1589478379)]
|
||||
pub created: u64,
|
||||
#[schema(example = "tgi")]
|
||||
pub model: String,
|
||||
pub choices: Vec<CompletionChoices>,
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub usage: Option<Usage>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, ToSchema)]
|
||||
pub(crate) struct ChatCompletionChoices {
|
||||
#[schema(example = "test")]
|
||||
pub message: ChatMessage,
|
||||
#[schema(example = "length")]
|
||||
pub finish_reason: Option<FinishReason>,
|
||||
// pub generated_tokens: u32,
|
||||
#[schema(example = 0)]
|
||||
pub index: u32,
|
||||
}
|
||||
|
||||
#[derive(Serialize, ToSchema)]
|
||||
pub(crate) struct ChatCompletionDeltaStreamChoices {
|
||||
#[schema(example = "test")]
|
||||
pub delta: ChatDeltaStreamMessage,
|
||||
#[schema(example = "length")]
|
||||
pub finish_reason: Option<FinishReason>,
|
||||
// pub generated_tokens: u32,
|
||||
#[schema(example = 0)]
|
||||
pub index: u32,
|
||||
}
|
||||
|
||||
#[derive(Serialize, ToSchema)]
|
||||
pub(crate) struct ChatCompletionsResponse {
|
||||
#[schema(example = "chatcmpl-abcdefgehij1234")]
|
||||
pub id: String,
|
||||
#[schema(example = "chat.completion")]
|
||||
pub object: String,
|
||||
#[schema(example = 1589478380)]
|
||||
pub created: u64,
|
||||
#[schema(example = "tgi")]
|
||||
pub model: String,
|
||||
pub choices: Vec<ChatCompletionChoices>,
|
||||
pub usage: Usage,
|
||||
}
|
||||
|
||||
#[derive(Serialize, ToSchema)]
|
||||
pub(crate) struct ChatCompletionsStreamResponse {
|
||||
#[schema(example = "chatcmpl-abcdefgehij1234")]
|
||||
pub id: String,
|
||||
#[schema(example = "chat.completion.chunk")]
|
||||
pub object: String,
|
||||
#[schema(example = 1589478380)]
|
||||
pub created: u64,
|
||||
#[schema(example = "tgi")]
|
||||
pub model: String,
|
||||
pub choices: Vec<ChatCompletionDeltaStreamChoices>,
|
||||
}
|
||||
|
||||
pub(crate) fn get_chatformatter() -> ChatFormatter {
|
||||
// TODO: improve reading this, e.g. at startup once from a chat_config.json
|
||||
let chat_user_pre: String = match std::env::var_os("TGICHAT_USER_PRE") {
|
||||
Some(v) => v.into_string().unwrap(),
|
||||
None => String::from(""),
|
||||
};
|
||||
let chat_user_post: String = match std::env::var_os("TGICHAT_USER_POST") {
|
||||
Some(v) => v.into_string().unwrap(),
|
||||
None => String::from(""),
|
||||
};
|
||||
let chat_ass_pre: String = match std::env::var_os("TGICHAT_ASS_PRE") {
|
||||
Some(v) => v.into_string().unwrap(),
|
||||
None => String::from(""),
|
||||
};
|
||||
let chat_ass_post: String = match std::env::var_os("TGICHAT_ASS_POST") {
|
||||
Some(v) => v.into_string().unwrap(),
|
||||
None => String::from(""),
|
||||
};
|
||||
let chat_sys_pre: String = match std::env::var_os("TGICHAT_SYS_PRE") {
|
||||
Some(v) => v.into_string().unwrap(),
|
||||
None => String::from(""),
|
||||
};
|
||||
let chat_sys_post: String = match std::env::var_os("TGICHAT_SYS_POST") {
|
||||
Some(v) => v.into_string().unwrap(),
|
||||
None => String::from(""),
|
||||
};
|
||||
|
||||
ChatFormatter {
|
||||
user_template: ChatFormatterPrePost {
|
||||
pre: chat_user_pre,
|
||||
post: chat_user_post,
|
||||
},
|
||||
assistant_template: ChatFormatterPrePost {
|
||||
pre: chat_ass_pre,
|
||||
post: chat_ass_post,
|
||||
},
|
||||
system_template: ChatFormatterPrePost {
|
||||
pre: chat_sys_pre,
|
||||
post: chat_sys_post,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) async fn generate_to_completions(
|
||||
resp: Json<GenerateResponse>,
|
||||
info: Extension<Info>,
|
||||
) -> Json<CompletionsResponse> {
|
||||
// let details = resp.details.as_ref().ok_or("details missing"); //;
|
||||
let details = resp.details.as_ref();
|
||||
|
||||
let gen_tokens = match details {
|
||||
Some(details) => details.generated_tokens,
|
||||
None => 0,
|
||||
};
|
||||
let finish_reason = match details {
|
||||
Some(details) => Some(details.finish_reason.clone()),
|
||||
None => None,
|
||||
};
|
||||
let prefill_len = match details {
|
||||
Some(details) => details.prefill.len() as u32,
|
||||
None => 0,
|
||||
};
|
||||
|
||||
let choices = CompletionChoices {
|
||||
text: resp.generated_text.clone(),
|
||||
finish_reason: finish_reason,
|
||||
logprobs: None,
|
||||
index: 0,
|
||||
};
|
||||
let usage = Some(Usage {
|
||||
completion_tokens: gen_tokens,
|
||||
total_tokens: gen_tokens + prefill_len,
|
||||
prompt_tokens: prefill_len,
|
||||
});
|
||||
let created_time = create_timestamp();
|
||||
let model = info.0.model_id;
|
||||
let resp: CompletionsResponse = CompletionsResponse {
|
||||
choices: vec![choices],
|
||||
created: created_time,
|
||||
id: String::from(format!("cmpl-{}", created_time)),
|
||||
object: String::from("text_completion"),
|
||||
model,
|
||||
usage,
|
||||
};
|
||||
Json(resp.into())
|
||||
}
|
||||
|
||||
pub(crate) async fn generate_to_chatcompletions(
|
||||
resp: Json<GenerateResponse>,
|
||||
info: Extension<Info>,
|
||||
) -> Json<ChatCompletionsResponse> {
|
||||
// let details = resp.details.as_ref().ok_or("details missing"); //;
|
||||
let details = resp.details.as_ref();
|
||||
|
||||
let gen_tokens = match details {
|
||||
Some(details) => details.generated_tokens,
|
||||
None => 0,
|
||||
};
|
||||
let finish_reason = match details {
|
||||
Some(details) => Some(details.finish_reason.clone()),
|
||||
None => None,
|
||||
};
|
||||
let prefill_len = match details {
|
||||
Some(details) => details.prefill.len() as u32,
|
||||
None => 0,
|
||||
};
|
||||
|
||||
let choices = ChatCompletionChoices {
|
||||
message: ChatMessage {
|
||||
role: ChatRole::Assistant,
|
||||
content: resp.generated_text.clone(),
|
||||
},
|
||||
finish_reason: finish_reason,
|
||||
index: 0,
|
||||
};
|
||||
let usage = Usage {
|
||||
completion_tokens: gen_tokens,
|
||||
total_tokens: gen_tokens + prefill_len,
|
||||
prompt_tokens: prefill_len,
|
||||
};
|
||||
let created_time = create_timestamp();
|
||||
let model = info.0.model_id;
|
||||
let resp = ChatCompletionsResponse {
|
||||
choices: vec![choices],
|
||||
created: created_time,
|
||||
id: String::from(format!("chatcmpl-{}", created_time)),
|
||||
object: String::from("chat.completion"),
|
||||
model,
|
||||
usage,
|
||||
};
|
||||
Json(resp.into())
|
||||
}
|
||||
|
||||
pub (crate) fn create_timestamp() -> u64 {
|
||||
SystemTime::now()
|
||||
.duration_since(UNIX_EPOCH)
|
||||
.expect("time went backwards")
|
||||
.as_secs() as u64
|
||||
}
|
||||
|
||||
pub(crate) fn chat_start_message(
|
||||
created_time: u64,
|
||||
model_name: &String,
|
||||
) -> ChatCompletionsStreamResponse {
|
||||
let choices: ChatCompletionDeltaStreamChoices = ChatCompletionDeltaStreamChoices {
|
||||
delta: ChatDeltaStreamMessage {
|
||||
content: None,
|
||||
role: Some(ChatRole::Assistant),
|
||||
},
|
||||
finish_reason: None,
|
||||
index: 0,
|
||||
};
|
||||
ChatCompletionsStreamResponse {
|
||||
choices: vec![choices],
|
||||
created: created_time,
|
||||
id: String::from(format!("chatcmpl-{}", created_time)),
|
||||
object: String::from("chat.completion.chunk"),
|
||||
model: model_name.to_owned(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn create_streaming_event(
|
||||
// st: StreamResponse,
|
||||
stream_type: &OpenaiStreamType,
|
||||
created_time: u64,
|
||||
details: Option<StreamDetails>,
|
||||
token: Token,
|
||||
model_name: &String,
|
||||
) -> Event {
|
||||
match stream_type {
|
||||
&OpenaiStreamType::ChatCompletionsStreamResponse => {
|
||||
let choices: ChatCompletionDeltaStreamChoices = ChatCompletionDeltaStreamChoices {
|
||||
delta: ChatDeltaStreamMessage {
|
||||
content: Some(token.text),
|
||||
role: None,
|
||||
},
|
||||
finish_reason: match details {
|
||||
Some(i) => Some(i.finish_reason),
|
||||
None => None,
|
||||
},
|
||||
index: 0,
|
||||
};
|
||||
let response = ChatCompletionsStreamResponse {
|
||||
choices: vec![choices],
|
||||
created: created_time,
|
||||
id: String::from(format!("chatcmpl-{}", created_time)),
|
||||
object: String::from("chat.completion.chunk"),
|
||||
model: model_name.to_owned(),
|
||||
};
|
||||
Event::default().json_data(response).expect("cannot parse ChatCompletionsStreamResponse")
|
||||
}
|
||||
&OpenaiStreamType::CompletionsResponse => {
|
||||
let choices = CompletionChoices {
|
||||
text: token.text,
|
||||
finish_reason: match details {
|
||||
Some(i) => Some(i.finish_reason),
|
||||
None => None,
|
||||
},
|
||||
logprobs: None,
|
||||
index: 0,
|
||||
};
|
||||
|
||||
let response = CompletionsResponse {
|
||||
choices: vec![choices],
|
||||
created: created_time,
|
||||
id: String::from(format!("cmpl-{}", created_time)),
|
||||
object: String::from("text_completion"),
|
||||
model: model_name.to_owned(),
|
||||
usage: None,
|
||||
};
|
||||
Event::default().json_data(response).expect("cannot parse streamed CompletionsResponse")
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,5 +1,21 @@
|
|||
mod health;
|
||||
/// Copyright 2023 text-generation-inference contributors
|
||||
///
|
||||
/// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
/// you may not use this file except in compliance with the License.
|
||||
/// You may obtain a copy of the License at
|
||||
///
|
||||
/// http://www.apache.org/licenses/LICENSE-2.0
|
||||
///
|
||||
/// Unless required by applicable law or agreed to in writing, software
|
||||
/// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
/// See the License for the specific language governing permissions and
|
||||
/// limitations under the License.
|
||||
///
|
||||
/// Text Generation Inference Webserver
|
||||
mod health;
|
||||
|
||||
pub mod completion;
|
||||
mod infer;
|
||||
mod queue;
|
||||
pub mod server;
|
||||
|
@ -211,7 +227,7 @@ pub struct Token {
|
|||
special: bool,
|
||||
}
|
||||
|
||||
#[derive(Serialize, ToSchema)]
|
||||
#[derive(Serialize, ToSchema, Clone)]
|
||||
#[serde(rename_all(serialize = "snake_case"))]
|
||||
pub(crate) enum FinishReason {
|
||||
#[schema(rename = "length")]
|
||||
|
@ -278,6 +294,11 @@ pub(crate) struct StreamResponse {
|
|||
pub details: Option<StreamDetails>,
|
||||
}
|
||||
|
||||
pub enum OpenaiStreamType {
|
||||
ChatCompletionsStreamResponse,
|
||||
CompletionsResponse,
|
||||
}
|
||||
|
||||
#[derive(Serialize, ToSchema)]
|
||||
pub(crate) struct ErrorResponse {
|
||||
pub error: String,
|
||||
|
|
|
@ -1,11 +1,33 @@
|
|||
/// Copyright 2023 text-generation-inference contributors
|
||||
///
|
||||
/// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
/// you may not use this file except in compliance with the License.
|
||||
/// You may obtain a copy of the License at
|
||||
///
|
||||
/// http://www.apache.org/licenses/LICENSE-2.0
|
||||
///
|
||||
/// Unless required by applicable law or agreed to in writing, software
|
||||
/// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
/// See the License for the specific language governing permissions and
|
||||
/// limitations under the License.
|
||||
///
|
||||
|
||||
/// HTTP Server logic
|
||||
use crate::completion::{
|
||||
chat_start_message, chat_to_generate_request, create_streaming_event,
|
||||
generate_to_chatcompletions, generate_to_completions, get_chatformatter, create_timestamp, ChatCompletionChoices,
|
||||
ChatCompletionDeltaStreamChoices, ChatCompletionsResponse, ChatCompletionsStreamResponse,
|
||||
ChatDeltaStreamMessage, ChatMessage, ChatRole, CompatChatCompletionRequest,
|
||||
CompatCompletionRequest, CompletionChoices, CompletionsResponse, Usage,
|
||||
};
|
||||
use crate::health::Health;
|
||||
use crate::infer::{InferError, InferResponse, InferStreamResponse};
|
||||
use crate::validation::ValidationError;
|
||||
use crate::{
|
||||
BestOfSequence, CompatGenerateRequest, Details, ErrorResponse, FinishReason,
|
||||
GenerateParameters, GenerateRequest, GenerateResponse, HubModelInfo, Infer, Info, PrefillToken,
|
||||
StreamDetails, StreamResponse, Token, Validation,
|
||||
GenerateParameters, GenerateRequest, GenerateResponse, HubModelInfo, Infer, Info,
|
||||
OpenaiStreamType, PrefillToken, StreamDetails, StreamResponse, Token, Validation,
|
||||
};
|
||||
use axum::extract::Extension;
|
||||
use axum::http::{HeaderMap, Method, StatusCode};
|
||||
|
@ -58,7 +80,7 @@ async fn compat_generate(
|
|||
infer: Extension<Infer>,
|
||||
req: Json<CompatGenerateRequest>,
|
||||
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
|
||||
let mut req = req.0;
|
||||
let mut req: CompatGenerateRequest = req.0;
|
||||
|
||||
// default return_full_text given the pipeline_tag
|
||||
if req.parameters.return_full_text.is_none() {
|
||||
|
@ -77,6 +99,107 @@ async fn compat_generate(
|
|||
}
|
||||
}
|
||||
|
||||
/// Plain Completion request. Enable stream of token by setting `stream == true`
|
||||
#[utoipa::path(
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/completions",
|
||||
request_body = CompatCompletionRequest,
|
||||
responses(
|
||||
(status = 200, description = "Generated Text",
|
||||
content(
|
||||
("application/json" = CompletionsResponse),
|
||||
("text/event-stream" = CompletionsResponse),
|
||||
)),
|
||||
(status = 424, description = "Generation Error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Request failed during generation"})),
|
||||
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
||||
example = json ! ({"error": "Model is overloaded"})),
|
||||
(status = 422, description = "Input validation error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Input validation error"})),
|
||||
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
||||
example = json ! ({"error": "Incomplete generation"})),
|
||||
)
|
||||
)]
|
||||
#[instrument(skip(infer, req))]
|
||||
async fn completions_generate(
|
||||
info: Extension<Info>,
|
||||
infer: Extension<Infer>,
|
||||
req: Json<CompatCompletionRequest>,
|
||||
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
|
||||
let req = req.0;
|
||||
|
||||
if req.stream {
|
||||
Ok(generate_stream_openai(
|
||||
infer,
|
||||
Json(req.into()),
|
||||
OpenaiStreamType::CompletionsResponse,
|
||||
info.model_id.clone(),
|
||||
)
|
||||
.await
|
||||
.into_response())
|
||||
} else {
|
||||
let (headers, generation) = generate(infer, Json(req.into())).await?;
|
||||
|
||||
let generation = generate_to_completions(generation, info).await;
|
||||
// wrap generation inside a Vec to match api-inference
|
||||
Ok((headers, Json(generation.0)).into_response())
|
||||
}
|
||||
}
|
||||
|
||||
/// Chat Completion request. Enable stream of token by setting `stream == true`
|
||||
#[utoipa::path(
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/chat/completions",
|
||||
request_body = CompatChatCompletionRequest,
|
||||
responses(
|
||||
(status = 200, description = "Generated Text",
|
||||
content(
|
||||
("application/json" = ChatCompletionsResponse),
|
||||
("text/event-stream" = ChatCompletionsStreamResponse),
|
||||
)),
|
||||
(status = 424, description = "Generation Error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Request failed during generation"})),
|
||||
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
||||
example = json ! ({"error": "Model is overloaded"})),
|
||||
(status = 422, description = "Input validation error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Input validation error"})),
|
||||
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
||||
example = json ! ({"error": "Incomplete generation"})),
|
||||
)
|
||||
)]
|
||||
#[instrument(skip(infer, req))]
|
||||
async fn chatcompletions_generate(
|
||||
info: Extension<Info>,
|
||||
infer: Extension<Infer>,
|
||||
req: Json<CompatChatCompletionRequest>,
|
||||
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
|
||||
let stream = req.stream;
|
||||
let req: CompatChatCompletionRequest = req.0;
|
||||
// TODO: move this somewhere else
|
||||
|
||||
let chat_formatter = get_chatformatter();
|
||||
let req: GenerateRequest = chat_to_generate_request(req, chat_formatter);
|
||||
|
||||
if stream {
|
||||
Ok(generate_stream_openai(
|
||||
infer,
|
||||
Json(req.into()),
|
||||
OpenaiStreamType::ChatCompletionsStreamResponse,
|
||||
info.model_id.clone(),
|
||||
)
|
||||
.await
|
||||
.into_response())
|
||||
} else {
|
||||
let (headers, generation) = generate(infer, Json(req.into())).await?;
|
||||
|
||||
let generation = generate_to_chatcompletions(generation, info).await;
|
||||
// wrap generation inside a Vec to match api-inference
|
||||
Ok((headers, Json(generation.0)).into_response())
|
||||
}
|
||||
}
|
||||
|
||||
/// Text Generation Inference endpoint info
|
||||
#[utoipa::path(
|
||||
get,
|
||||
|
@ -330,6 +453,7 @@ time_per_token,
|
|||
seed,
|
||||
)
|
||||
)]
|
||||
|
||||
async fn generate_stream(
|
||||
infer: Extension<Infer>,
|
||||
req: Json<GenerateRequest>,
|
||||
|
@ -491,6 +615,158 @@ async fn generate_stream(
|
|||
(headers, Sse::new(stream).keep_alive(KeepAlive::default()))
|
||||
}
|
||||
|
||||
async fn generate_stream_openai(
|
||||
infer: Extension<Infer>,
|
||||
req: Json<GenerateRequest>,
|
||||
stream_type: OpenaiStreamType,
|
||||
model_name: String,
|
||||
) -> (
|
||||
HeaderMap,
|
||||
Sse<impl Stream<Item = Result<Event, Infallible>>>,
|
||||
) {
|
||||
let span = tracing::Span::current();
|
||||
let start_time = Instant::now();
|
||||
let created_time = create_timestamp();
|
||||
metrics::increment_counter!("tgi_request_count");
|
||||
|
||||
tracing::debug!("Input: {}", req.0.inputs);
|
||||
|
||||
let compute_characters = req.0.inputs.chars().count();
|
||||
|
||||
let mut headers = HeaderMap::new();
|
||||
headers.insert("x-compute-type", "gpu+optimized".parse().unwrap());
|
||||
headers.insert(
|
||||
"x-compute-characters",
|
||||
compute_characters.to_string().parse().unwrap(),
|
||||
);
|
||||
headers.insert("X-Accel-Buffering", "no".parse().unwrap());
|
||||
|
||||
let stream = async_stream::stream! {
|
||||
// Inference
|
||||
let mut end_reached = false;
|
||||
let mut error = false;
|
||||
|
||||
let details = req.0.parameters.details;
|
||||
|
||||
let best_of = req.0.parameters.best_of.unwrap_or(1);
|
||||
if best_of != 1 {
|
||||
let err = InferError::from(ValidationError::BestOfStream);
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
tracing::error!("{err}");
|
||||
yield Ok(Event::from(err));
|
||||
} else if req.0.parameters.decoder_input_details {
|
||||
let err = InferError::from(ValidationError::PrefillDetailsStream);
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
tracing::error!("{err}");
|
||||
yield Ok(Event::from(err));
|
||||
} else {
|
||||
match infer.generate_stream(req.0).instrument(info_span!(parent: &span, "async_stream")).await {
|
||||
// Keep permit as long as generate_stream lives
|
||||
Ok((_permit, mut response_stream)) => {
|
||||
// Server-Sent Event stream
|
||||
match stream_type {
|
||||
OpenaiStreamType::ChatCompletionsStreamResponse => {
|
||||
let start_msg = chat_start_message(created_time, &model_name);
|
||||
yield Ok(Event::from(Event::default().json_data(start_msg).unwrap()))
|
||||
},
|
||||
_ => ()
|
||||
};
|
||||
while let Some(response) = response_stream.next().await {
|
||||
match response {
|
||||
Ok(response) => {
|
||||
match response {
|
||||
// Prefill is ignored
|
||||
InferStreamResponse::Prefill(_) => {}
|
||||
// Yield event for every new token
|
||||
InferStreamResponse::Token(token) => {
|
||||
tracing::debug!(parent: &span, "Token: {:?}", token);
|
||||
let stream_event = create_streaming_event(&stream_type, created_time, None, token, &model_name);
|
||||
|
||||
yield Ok(stream_event);
|
||||
}
|
||||
// Yield event for last token and compute timings
|
||||
InferStreamResponse::End {
|
||||
token,
|
||||
generated_text,
|
||||
start,
|
||||
queued,
|
||||
} => {
|
||||
// Token details
|
||||
let details = match details {
|
||||
true => Some(StreamDetails {
|
||||
finish_reason: FinishReason::from(generated_text.finish_reason),
|
||||
generated_tokens: generated_text.generated_tokens,
|
||||
seed: generated_text.seed,
|
||||
}),
|
||||
false => None,
|
||||
};
|
||||
|
||||
// Timings
|
||||
let total_time = start_time.elapsed();
|
||||
let validation_time = queued - start_time;
|
||||
let queue_time = start - queued;
|
||||
let inference_time = Instant::now() - start;
|
||||
let time_per_token = inference_time / generated_text.generated_tokens;
|
||||
|
||||
// Tracing metadata
|
||||
span.record("total_time", format!("{total_time:?}"));
|
||||
span.record("validation_time", format!("{validation_time:?}"));
|
||||
span.record("queue_time", format!("{queue_time:?}"));
|
||||
span.record("inference_time", format!("{inference_time:?}"));
|
||||
span.record("time_per_token", format!("{time_per_token:?}"));
|
||||
span.record("seed", format!("{:?}", generated_text.seed));
|
||||
|
||||
// Metrics
|
||||
metrics::increment_counter!("tgi_request_success");
|
||||
metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);
|
||||
|
||||
// create Openai StreamResponse
|
||||
end_reached = true;
|
||||
|
||||
tracing::debug!(parent: &span, "Output: {}", generated_text.text);
|
||||
tracing::info!(parent: &span, "Success");
|
||||
|
||||
let stream_event = create_streaming_event(&stream_type, created_time, details, token, &model_name);
|
||||
yield Ok(stream_event);
|
||||
yield Ok(Event::default().data("[DONE]"));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// yield error
|
||||
Err(err) => {
|
||||
error = true;
|
||||
yield Ok(Event::from(err));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
// yield error
|
||||
Err(err) => {
|
||||
error = true;
|
||||
yield Ok(Event::from(err));
|
||||
}
|
||||
}
|
||||
// Check if generation reached the end
|
||||
// Skip if we already sent an error
|
||||
if !end_reached && !error {
|
||||
let err = InferError::IncompleteGeneration;
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
|
||||
tracing::error!("{err}");
|
||||
yield Ok(Event::from(err));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
(headers, Sse::new(stream).keep_alive(KeepAlive::default()))
|
||||
}
|
||||
|
||||
/// Prometheus metrics scrape endpoint
|
||||
#[utoipa::path(
|
||||
get,
|
||||
|
@ -535,6 +811,8 @@ pub async fn run(
|
|||
compat_generate,
|
||||
generate,
|
||||
generate_stream,
|
||||
completions_generate,
|
||||
chatcompletions_generate,
|
||||
metrics,
|
||||
),
|
||||
components(
|
||||
|
@ -552,6 +830,18 @@ pub async fn run(
|
|||
StreamResponse,
|
||||
StreamDetails,
|
||||
ErrorResponse,
|
||||
// completions messages
|
||||
CompatCompletionRequest,
|
||||
CompatChatCompletionRequest,
|
||||
ChatMessage,
|
||||
ChatRole,
|
||||
CompletionsResponse,
|
||||
Usage,
|
||||
CompletionChoices,
|
||||
ChatCompletionsResponse,
|
||||
ChatCompletionChoices,
|
||||
ChatCompletionsStreamResponse,
|
||||
ChatDeltaStreamMessage, ChatCompletionDeltaStreamChoices,
|
||||
)
|
||||
),
|
||||
tags(
|
||||
|
@ -672,6 +962,8 @@ pub async fn run(
|
|||
.route("/info", get(get_model_info))
|
||||
.route("/generate", post(generate))
|
||||
.route("/generate_stream", post(generate_stream))
|
||||
.route("/completions", post(completions_generate))
|
||||
.route("/chat/completions", post(chatcompletions_generate))
|
||||
// AWS Sagemaker route
|
||||
.route("/invocations", post(compat_generate))
|
||||
// Base Health route
|
||||
|
|
Loading…
Reference in New Issue