2022-12-22 21:51:27 -07:00
# Riffusion
2022-11-25 14:20:30 -07:00
2022-12-22 21:51:27 -07:00
Riffusion is a technique for real-time music and audio generation with stable diffusion.
2022-11-25 17:30:11 -07:00
2022-12-12 20:37:41 -07:00
Read about it at https://www.riffusion.com/about and try it at https://www.riffusion.com/.
2022-12-12 19:55:40 -07:00
2022-12-22 21:51:27 -07:00
* Inference server: https://github.com/riffusion/riffusion
* Web app: https://github.com/riffusion/riffusion-app
2022-12-12 20:24:24 -07:00
* Model checkpoint: https://huggingface.co/riffusion/riffusion-model-v1
2022-11-25 17:30:11 -07:00
2022-12-12 20:40:21 -07:00
This repository contains the Python backend does the model inference and audio processing, including:
2022-12-12 20:37:41 -07:00
* a diffusers pipeline that performs prompt interpolation combined with image conditioning
* a module for (approximately) converting between spectrograms and waveforms
* a flask server to provide model inference via API to the next.js app
2022-12-12 23:06:14 -07:00
* a model template titled baseten.py for deploying as a Truss
2022-12-12 20:37:41 -07:00
2022-11-25 17:30:11 -07:00
## Install
2022-12-22 21:51:27 -07:00
Tested with Python 3.9 and diffusers 0.9.0.
To run this model, you need a GPU with CUDA. To run it in real time, it needs to be able to run stable diffusion with approximately 50 steps in under five seconds.
2022-12-26 18:26:46 -07:00
You need to make sure you have torch and torchaudio installed with CUDA support. See the [install guide ](https://pytorch.org/get-started/locally/ ) or [stable wheels ](https://download.pytorch.org/whl/torch_stable.html ).
2022-11-25 17:30:11 -07:00
```
conda create --name riffusion-inference python=3.9
conda activate riffusion-inference
python -m pip install -r requirements.txt
```
2022-12-22 21:51:27 -07:00
If torchaudio has no audio backend, see [this issue ](https://github.com/riffusion/riffusion/issues/12 ).
2022-12-26 18:26:46 -07:00
You can open and save WAV files with pure python. For opening and saving non-wav files – like mp3 – you'll need ffmpeg or libav.
2022-12-22 21:51:27 -07:00
Guides:
* [CUDA help ](https://github.com/riffusion/riffusion/issues/3 )
* [Windows Simple Instructions ](https://www.reddit.com/r/riffusion/comments/zrubc9/installation_guide_for_riffusion_app_inference/ )
2022-12-26 18:26:46 -07:00
## Run the model server
2022-11-25 17:30:11 -07:00
Start the Flask server:
```
2022-12-26 18:26:46 -07:00
python -m riffusion.server --host 127.0.0.1 --port 3013
2022-11-25 17:30:11 -07:00
```
2022-12-12 23:43:46 -07:00
You can specify `--checkpoint` with your own directory or huggingface ID in diffusers format.
2022-11-25 17:30:11 -07:00
The model endpoint is now available at `http://127.0.0.1:3013/run_inference` via POST request.
Example input (see [InferenceInput ](https://github.com/hmartiro/riffusion-inference/blob/main/riffusion/datatypes.py#L28 ) for the API):
```
{
2022-12-15 12:28:21 -07:00
"alpha": 0.75,
"num_inference_steps": 50,
"seed_image_id": "og_beat",
"start": {
"prompt": "church bells on sunday",
"seed": 42,
"denoising": 0.75,
"guidance": 7.0
2022-11-25 17:30:11 -07:00
},
2022-12-15 12:28:21 -07:00
"end": {
"prompt": "jazz with piano",
"seed": 123,
"denoising": 0.75,
"guidance": 7.0
}
2022-11-25 17:30:11 -07:00
}
```
Example output (see [InferenceOutput ](https://github.com/hmartiro/riffusion-inference/blob/main/riffusion/datatypes.py#L54 ) for the API):
```
{
2022-12-15 12:28:21 -07:00
"image": "< base64 encoded JPEG image > ",
"audio": "< base64 encoded MP3 clip > "
2022-11-25 17:30:11 -07:00
}
```
2022-12-14 22:15:02 -07:00
2022-12-26 18:26:46 -07:00
Use the `--device` argument to specify the torch device to use.
`cuda` is recommended.
`cpu` works but is quite slow.
`mps` is supported for inference, but some operations fall back to CPU. You may need to set
PYTORCH_ENABLE_MPS_FALLBACK=1. In addition, it is not deterministic.
## Test
Tests live in the `test/` directory and are implemented with `unittest` .
To run all tests:
```
python -m unittest test/*_test.py
```
To run a single test:
```
python -m unittest test.audio_to_image_test
```
To preserve temporary outputs for debugging, set `RIFFUSION_TEST_DEBUG` :
```
RIFFUSION_TEST_DEBUG=1 python -m unittest test.audio_to_image_test
```
To run a single test case:
```
python -m unittest test.audio_to_image_test -k AudioToImageTest.test_stereo
```
To run tests using a specific torch device, set `RIFFUSION_TEST_DEVICE` . Tests should pass with
`cpu` , `cuda` , and `mps` backends.
## Development
Install additional packages for dev with `pip install -r dev_requirements.txt` .
* Linter: `ruff`
* Formatter: `black`
* Type checker: `mypy`
These are configured in `pyproject.toml` .
The results of `mypy .` , `black .` , and `ruff .` *must* be clean to accept a PR.
2022-12-14 22:15:02 -07:00
## Citation
If you build on this work, please cite it as follows:
```
2022-12-19 00:13:08 -07:00
@article {Forsgren_Martiros_2022,
2022-12-14 22:15:02 -07:00
author = {Forsgren, Seth* and Martiros, Hayk*},
title = {{Riffusion - Stable diffusion for real-time music generation}},
url = {https://riffusion.com/about},
year = {2022}
}
```