parent
39dc247a1d
commit
420674148a
|
@ -1,11 +1,7 @@
|
|||
import io
|
||||
|
||||
import streamlit as st
|
||||
from PIL import Image
|
||||
|
||||
from riffusion.spectrogram_image_converter import SpectrogramImageConverter
|
||||
from riffusion.spectrogram_params import SpectrogramParams
|
||||
from riffusion.streamlit import util as streamlit_util
|
||||
from riffusion.util.image_util import exif_from_image
|
||||
|
||||
|
||||
|
@ -26,13 +22,13 @@ def render_image_to_audio() -> None:
|
|||
st.write("Exif data:")
|
||||
st.write(exif)
|
||||
|
||||
device = "cuda"
|
||||
# device = "cuda"
|
||||
|
||||
try:
|
||||
params = SpectrogramParams.from_exif(exif=image.getexif())
|
||||
except KeyError:
|
||||
st.warning("Could not find spectrogram parameters in exif data. Using defaults.")
|
||||
params = SpectrogramParams()
|
||||
# try:
|
||||
# params = SpectrogramParams.from_exif(exif=image.getexif())
|
||||
# except KeyError:
|
||||
# st.warning("Could not find spectrogram parameters in exif data. Using defaults.")
|
||||
# params = SpectrogramParams()
|
||||
|
||||
# segment = streamlit_util.audio_from_spectrogram_image(
|
||||
# image=image,
|
||||
|
|
|
@ -1,101 +1,32 @@
|
|||
import io
|
||||
from pathlib import Path
|
||||
import typing as T
|
||||
|
||||
import dacite
|
||||
from diffusers import StableDiffusionPipeline
|
||||
import streamlit as st
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from riffusion.datatypes import InferenceInput
|
||||
from riffusion.spectrogram_image_converter import SpectrogramImageConverter
|
||||
from riffusion.spectrogram_params import SpectrogramParams
|
||||
from riffusion.streamlit import util as streamlit_util
|
||||
|
||||
|
||||
@st.experimental_singleton
|
||||
def load_stable_diffusion_pipeline(
|
||||
checkpoint: str = "riffusion/riffusion-model-v1",
|
||||
device: str = "cuda",
|
||||
dtype: torch.dtype = torch.float16,
|
||||
) -> StableDiffusionPipeline:
|
||||
"""
|
||||
Load the riffusion pipeline.
|
||||
"""
|
||||
if device == "cpu" or device.lower().startswith("mps"):
|
||||
print(f"WARNING: Falling back to float32 on {device}, float16 is unsupported")
|
||||
dtype = torch.float32
|
||||
|
||||
return StableDiffusionPipeline.from_pretrained(
|
||||
checkpoint,
|
||||
revision="main",
|
||||
torch_dtype=dtype,
|
||||
safety_checker=lambda images, **kwargs: (images, False),
|
||||
).to(device)
|
||||
|
||||
|
||||
@st.experimental_memo
|
||||
def run_txt2img(
|
||||
prompt: str,
|
||||
num_inference_steps: int,
|
||||
guidance: float,
|
||||
negative_prompt: str,
|
||||
seed: int,
|
||||
width: int,
|
||||
height: int,
|
||||
device: str = "cuda",
|
||||
) -> Image.Image:
|
||||
"""
|
||||
Run the text to image pipeline with caching.
|
||||
"""
|
||||
pipeline = load_stable_diffusion_pipeline(device=device)
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(seed)
|
||||
|
||||
output = pipeline(
|
||||
prompt=prompt,
|
||||
num_inference_steps=num_inference_steps,
|
||||
guidance_scale=guidance,
|
||||
negative_prompt=negative_prompt or None,
|
||||
generator=generator,
|
||||
width=width,
|
||||
height=height,
|
||||
)
|
||||
|
||||
return output["images"][0]
|
||||
|
||||
|
||||
def render_text_to_audio() -> None:
|
||||
"""
|
||||
Render audio from text.
|
||||
"""
|
||||
prompt = st.text_input("Prompt")
|
||||
if not prompt:
|
||||
st.info("Enter a prompt")
|
||||
return
|
||||
|
||||
negative_prompt = st.text_input("Negative prompt")
|
||||
seed = st.sidebar.number_input("Seed", value=42)
|
||||
num_inference_steps = st.sidebar.number_input("Inference steps", value=20)
|
||||
width = st.sidebar.number_input("Width", value=512)
|
||||
height = st.sidebar.number_input("Height", value=512)
|
||||
seed = T.cast(int, st.sidebar.number_input("Seed", value=42))
|
||||
num_inference_steps = T.cast(int, st.sidebar.number_input("Inference steps", value=50))
|
||||
width = T.cast(int, st.sidebar.number_input("Width", value=512))
|
||||
height = T.cast(int, st.sidebar.number_input("Height", value=512))
|
||||
guidance = st.sidebar.number_input(
|
||||
"Guidance", value=7.0, help="How much the model listens to the text prompt"
|
||||
)
|
||||
|
||||
default_device = "cpu"
|
||||
if torch.cuda.is_available():
|
||||
default_device = "cuda"
|
||||
elif torch.backends.mps.is_available():
|
||||
default_device = "mps"
|
||||
if not prompt:
|
||||
st.info("Enter a prompt")
|
||||
return
|
||||
|
||||
device_options = ["cuda", "cpu", "mps"]
|
||||
device = st.sidebar.selectbox(
|
||||
"Device", options=device_options, index=device_options.index(default_device)
|
||||
)
|
||||
assert device is not None
|
||||
device = streamlit_util.select_device(st.sidebar)
|
||||
|
||||
image = run_txt2img(
|
||||
image = streamlit_util.run_txt2img(
|
||||
prompt=prompt,
|
||||
num_inference_steps=num_inference_steps,
|
||||
guidance=guidance,
|
||||
|
@ -105,7 +36,6 @@ def render_text_to_audio() -> None:
|
|||
height=height,
|
||||
device=device,
|
||||
)
|
||||
|
||||
st.image(image)
|
||||
|
||||
# TODO(hayk): Change the frequency range to [20, 20k] once the model is retrained
|
||||
|
@ -114,16 +44,13 @@ def render_text_to_audio() -> None:
|
|||
max_frequency=10000,
|
||||
)
|
||||
|
||||
segment = streamlit_util.audio_from_spectrogram_image(
|
||||
audio_bytes = streamlit_util.audio_bytes_from_spectrogram_image(
|
||||
image=image,
|
||||
params=params,
|
||||
device=device,
|
||||
output_format="mp3",
|
||||
)
|
||||
|
||||
mp3_bytes = io.BytesIO()
|
||||
segment.export(mp3_bytes, format="mp3")
|
||||
mp3_bytes.seek(0)
|
||||
st.audio(mp3_bytes)
|
||||
st.audio(audio_bytes)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1,9 +1,12 @@
|
|||
"""
|
||||
Streamlit utilities (mostly cached wrappers around riffusion code).
|
||||
"""
|
||||
import io
|
||||
import typing as T
|
||||
|
||||
import pydub
|
||||
import streamlit as st
|
||||
import torch
|
||||
from diffusers import StableDiffusionPipeline
|
||||
from PIL import Image
|
||||
|
||||
from riffusion.riffusion_pipeline import RiffusionPipeline
|
||||
|
@ -26,6 +29,63 @@ def load_riffusion_checkpoint(
|
|||
device=device,
|
||||
)
|
||||
|
||||
|
||||
@st.experimental_singleton
|
||||
def load_stable_diffusion_pipeline(
|
||||
checkpoint: str = "riffusion/riffusion-model-v1",
|
||||
device: str = "cuda",
|
||||
dtype: torch.dtype = torch.float16,
|
||||
) -> StableDiffusionPipeline:
|
||||
"""
|
||||
Load the riffusion pipeline.
|
||||
|
||||
TODO(hayk): Merge this into RiffusionPipeline to just load one model.
|
||||
"""
|
||||
if device == "cpu" or device.lower().startswith("mps"):
|
||||
print(f"WARNING: Falling back to float32 on {device}, float16 is unsupported")
|
||||
dtype = torch.float32
|
||||
|
||||
return StableDiffusionPipeline.from_pretrained(
|
||||
checkpoint,
|
||||
revision="main",
|
||||
torch_dtype=dtype,
|
||||
safety_checker=lambda images, **kwargs: (images, False),
|
||||
).to(device)
|
||||
|
||||
|
||||
|
||||
@st.experimental_memo
|
||||
def run_txt2img(
|
||||
prompt: str,
|
||||
num_inference_steps: int,
|
||||
guidance: float,
|
||||
negative_prompt: str,
|
||||
seed: int,
|
||||
width: int,
|
||||
height: int,
|
||||
device: str = "cuda",
|
||||
) -> Image.Image:
|
||||
"""
|
||||
Run the text to image pipeline with caching.
|
||||
"""
|
||||
pipeline = load_stable_diffusion_pipeline(device=device)
|
||||
|
||||
generator_device = "cpu" if device.lower().startswith("mps") else device
|
||||
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
||||
|
||||
output = pipeline(
|
||||
prompt=prompt,
|
||||
num_inference_steps=num_inference_steps,
|
||||
guidance_scale=guidance,
|
||||
negative_prompt=negative_prompt or None,
|
||||
generator=generator,
|
||||
width=width,
|
||||
height=height,
|
||||
)
|
||||
|
||||
return output["images"][0]
|
||||
|
||||
|
||||
# class CachedSpectrogramImageConverter:
|
||||
|
||||
# def __init__(self, params: SpectrogramParams, device: str = "cuda"):
|
||||
|
@ -54,13 +114,39 @@ def spectrogram_image_converter(
|
|||
|
||||
|
||||
@st.experimental_memo
|
||||
def audio_from_spectrogram_image(
|
||||
def audio_bytes_from_spectrogram_image(
|
||||
image: Image.Image,
|
||||
params: SpectrogramParams,
|
||||
device: str = "cuda",
|
||||
) -> pydub.AudioSegment:
|
||||
output_format: str = "mp3",
|
||||
) -> io.BytesIO:
|
||||
converter = spectrogram_image_converter(params=params, device=device)
|
||||
return converter.audio_from_spectrogram_image(image)
|
||||
segment = converter.audio_from_spectrogram_image(image)
|
||||
|
||||
audio_bytes = io.BytesIO()
|
||||
segment.export(audio_bytes, format=output_format)
|
||||
audio_bytes.seek(0)
|
||||
|
||||
return audio_bytes
|
||||
|
||||
|
||||
def select_device(container: T.Any = st.sidebar) -> str:
|
||||
"""
|
||||
Dropdown to select a torch device, with an intelligent default.
|
||||
"""
|
||||
default_device = "cpu"
|
||||
if torch.cuda.is_available():
|
||||
default_device = "cuda"
|
||||
elif torch.backends.mps.is_available():
|
||||
default_device = "mps"
|
||||
|
||||
device_options = ["cuda", "cpu", "mps"]
|
||||
device = st.sidebar.selectbox(
|
||||
"Device", options=device_options, index=device_options.index(default_device)
|
||||
)
|
||||
assert device is not None
|
||||
|
||||
return device
|
||||
|
||||
|
||||
# @st.experimental_memo
|
||||
|
|
Loading…
Reference in New Issue