2023-11-09 20:06:26 -07:00
|
|
|
from modules import shared
|
|
|
|
from modules.sd_hijack_utils import CondFunc
|
|
|
|
|
|
|
|
has_ipex = False
|
|
|
|
try:
|
|
|
|
import torch
|
2023-12-02 00:54:25 -07:00
|
|
|
import intel_extension_for_pytorch as ipex # noqa: F401
|
2023-11-09 20:06:26 -07:00
|
|
|
has_ipex = True
|
|
|
|
except Exception:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2023-12-01 23:00:46 -07:00
|
|
|
def check_for_xpu():
|
|
|
|
return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available()
|
2023-11-09 20:06:26 -07:00
|
|
|
|
|
|
|
|
|
|
|
def get_xpu_device_string():
|
|
|
|
if shared.cmd_opts.device_id is not None:
|
|
|
|
return f"xpu:{shared.cmd_opts.device_id}"
|
|
|
|
return "xpu"
|
|
|
|
|
2023-12-01 23:00:46 -07:00
|
|
|
|
|
|
|
def torch_xpu_gc():
|
|
|
|
with torch.xpu.device(get_xpu_device_string()):
|
|
|
|
torch.xpu.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
has_xpu = check_for_xpu()
|
2023-11-09 20:06:26 -07:00
|
|
|
|
2023-12-18 03:00:01 -07:00
|
|
|
|
|
|
|
# Arc GPU cannot allocate a single block larger than 4GB: https://github.com/intel/compute-runtime/issues/627
|
|
|
|
# Here we implement a slicing algorithm to split large batch size into smaller chunks,
|
|
|
|
# so that SDPA of each chunk wouldn't require any allocation larger than ARC_SINGLE_ALLOCATION_LIMIT.
|
|
|
|
# The heuristic limit (TOTAL_VRAM // 8) is tuned for Intel Arc A770 16G and Arc A750 8G,
|
|
|
|
# which is the best trade-off between VRAM usage and performance.
|
2023-12-18 04:44:52 -07:00
|
|
|
ARC_SINGLE_ALLOCATION_LIMIT = {}
|
2023-12-18 03:00:01 -07:00
|
|
|
orig_sdp_attn_func = torch.nn.functional.scaled_dot_product_attention
|
|
|
|
def torch_xpu_scaled_dot_product_attention(
|
|
|
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, *args, **kwargs
|
|
|
|
):
|
|
|
|
# cast to same dtype first
|
|
|
|
key = key.to(query.dtype)
|
|
|
|
value = value.to(query.dtype)
|
2024-01-06 01:32:18 -07:00
|
|
|
if attn_mask is not None and attn_mask.dtype != torch.bool:
|
|
|
|
attn_mask = attn_mask.to(query.dtype)
|
2023-12-18 03:00:01 -07:00
|
|
|
|
|
|
|
N = query.shape[:-2] # Batch size
|
|
|
|
L = query.size(-2) # Target sequence length
|
|
|
|
E = query.size(-1) # Embedding dimension of the query and key
|
|
|
|
S = key.size(-2) # Source sequence length
|
|
|
|
Ev = value.size(-1) # Embedding dimension of the value
|
|
|
|
|
|
|
|
total_batch_size = torch.numel(torch.empty(N))
|
2023-12-18 04:44:52 -07:00
|
|
|
device_id = query.device.index
|
|
|
|
if device_id not in ARC_SINGLE_ALLOCATION_LIMIT:
|
|
|
|
ARC_SINGLE_ALLOCATION_LIMIT[device_id] = min(torch.xpu.get_device_properties(device_id).total_memory // 8, 4 * 1024 * 1024 * 1024)
|
|
|
|
batch_size_limit = max(1, ARC_SINGLE_ALLOCATION_LIMIT[device_id] // (L * S * query.element_size()))
|
2023-12-18 03:00:01 -07:00
|
|
|
|
|
|
|
if total_batch_size <= batch_size_limit:
|
|
|
|
return orig_sdp_attn_func(
|
|
|
|
query,
|
|
|
|
key,
|
|
|
|
value,
|
|
|
|
attn_mask,
|
|
|
|
dropout_p,
|
|
|
|
is_causal,
|
|
|
|
*args, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
query = torch.reshape(query, (-1, L, E))
|
|
|
|
key = torch.reshape(key, (-1, S, E))
|
|
|
|
value = torch.reshape(value, (-1, S, Ev))
|
|
|
|
if attn_mask is not None:
|
|
|
|
attn_mask = attn_mask.view(-1, L, S)
|
|
|
|
chunk_count = (total_batch_size + batch_size_limit - 1) // batch_size_limit
|
|
|
|
outputs = []
|
|
|
|
for i in range(chunk_count):
|
|
|
|
attn_mask_chunk = (
|
|
|
|
None
|
|
|
|
if attn_mask is None
|
|
|
|
else attn_mask[i * batch_size_limit : (i + 1) * batch_size_limit, :, :]
|
|
|
|
)
|
|
|
|
chunk_output = orig_sdp_attn_func(
|
|
|
|
query[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
|
|
|
|
key[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
|
|
|
|
value[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
|
|
|
|
attn_mask_chunk,
|
|
|
|
dropout_p,
|
|
|
|
is_causal,
|
|
|
|
*args, **kwargs
|
|
|
|
)
|
|
|
|
outputs.append(chunk_output)
|
|
|
|
result = torch.cat(outputs, dim=0)
|
|
|
|
return torch.reshape(result, (*N, L, Ev))
|
|
|
|
|
|
|
|
|
2024-01-06 04:09:56 -07:00
|
|
|
def is_xpu_device(device: str | torch.device = None):
|
|
|
|
if device is None:
|
|
|
|
return False
|
|
|
|
if isinstance(device, str):
|
|
|
|
return device.startswith("xpu")
|
|
|
|
return device.type == "xpu"
|
|
|
|
|
|
|
|
|
2023-11-09 20:06:26 -07:00
|
|
|
if has_xpu:
|
2024-01-06 04:09:56 -07:00
|
|
|
try:
|
|
|
|
# torch.Generator supports "xpu" device since 2.1
|
|
|
|
torch.Generator("xpu")
|
2024-01-06 04:14:06 -07:00
|
|
|
except RuntimeError:
|
|
|
|
# W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device (for torch < 2.1)
|
2024-01-06 04:09:56 -07:00
|
|
|
CondFunc('torch.Generator',
|
|
|
|
lambda orig_func, device=None: torch.xpu.Generator(device),
|
|
|
|
lambda orig_func, device=None: is_xpu_device(device))
|
2023-11-09 20:06:26 -07:00
|
|
|
|
2023-12-01 23:00:46 -07:00
|
|
|
# W/A for some OPs that could not handle different input dtypes
|
2023-11-09 20:06:26 -07:00
|
|
|
CondFunc('torch.nn.functional.layer_norm',
|
|
|
|
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
|
|
|
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
|
|
|
|
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
|
|
|
weight is not None and input.dtype != weight.data.dtype)
|
|
|
|
CondFunc('torch.nn.modules.GroupNorm.forward',
|
|
|
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
|
|
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
2023-12-01 23:00:46 -07:00
|
|
|
CondFunc('torch.nn.modules.linear.Linear.forward',
|
|
|
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
|
|
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
|
|
|
CondFunc('torch.nn.modules.conv.Conv2d.forward',
|
|
|
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
|
|
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
2023-12-06 05:55:42 -07:00
|
|
|
CondFunc('torch.bmm',
|
|
|
|
lambda orig_func, input, mat2, out=None: orig_func(input.to(mat2.dtype), mat2, out=out),
|
|
|
|
lambda orig_func, input, mat2, out=None: input.dtype != mat2.dtype)
|
2023-12-09 03:09:45 -07:00
|
|
|
CondFunc('torch.cat',
|
|
|
|
lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out),
|
|
|
|
lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors))
|
|
|
|
CondFunc('torch.nn.functional.scaled_dot_product_attention',
|
2023-12-18 03:00:01 -07:00
|
|
|
lambda orig_func, *args, **kwargs: torch_xpu_scaled_dot_product_attention(*args, **kwargs),
|
|
|
|
lambda orig_func, query, *args, **kwargs: query.is_xpu)
|