stable-diffusion-webui/modules/sd_models_config.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

138 lines
5.5 KiB
Python
Raw Normal View History

import os
import torch
from modules import shared, paths, sd_disable_initialization, devices
sd_configs_path = shared.sd_configs_path
sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
2023-07-11 12:16:43 -06:00
sd_xl_repo_configs_path = os.path.join(paths.paths['Stable Diffusion XL'], "configs", "inference")
config_default = shared.sd_default_config
config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
2023-07-12 14:52:43 -06:00
config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
2023-07-14 00:16:01 -06:00
config_sdxl_refiner = os.path.join(sd_xl_repo_configs_path, "sd_xl_refiner.yaml")
2023-12-21 05:15:51 -07:00
config_sdxl_inpainting = os.path.join(sd_configs_path, "sd_xl_inpaint.yaml")
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
2023-09-23 03:51:41 -06:00
config_alt_diffusion_m18 = os.path.join(sd_configs_path, "alt-diffusion-m18-inference.yaml")
2024-06-15 23:04:31 -06:00
config_sd3 = os.path.join(sd_configs_path, "sd3-inference.yaml")
def is_using_v_parameterization_for_sd2(state_dict):
"""
Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
"""
import ldm.modules.diffusionmodules.openaimodel
2024-06-23 11:16:48 -06:00
device = devices.device
with sd_disable_initialization.DisableInitialization():
unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
2024-05-15 13:20:40 -06:00
use_checkpoint=False,
use_fp16=False,
image_size=32,
in_channels=4,
out_channels=4,
model_channels=320,
attention_resolutions=[4, 2, 1],
num_res_blocks=2,
channel_mult=[1, 2, 4, 4],
num_head_channels=64,
use_spatial_transformer=True,
use_linear_in_transformer=True,
transformer_depth=1,
context_dim=1024,
legacy=False
)
unet.eval()
with torch.no_grad():
unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
unet.load_state_dict(unet_sd, strict=True)
2024-07-06 02:00:22 -06:00
unet.to(device=device, dtype=devices.dtype_unet)
test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
2024-07-06 02:00:22 -06:00
with devices.autocast():
out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().cpu().item()
return out < -1
def guess_model_config_from_state_dict(sd, filename):
sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
2024-06-15 23:04:31 -06:00
if "model.diffusion_model.x_embedder.proj.weight" in sd:
return config_sd3
2023-07-12 14:52:43 -06:00
if sd.get('conditioner.embedders.1.model.ln_final.weight', None) is not None:
2023-12-21 05:15:51 -07:00
if diffusion_model_input.shape[1] == 9:
return config_sdxl_inpainting
else:
return config_sdxl
2024-06-15 23:04:31 -06:00
2023-07-14 00:16:01 -06:00
if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:
return config_sdxl_refiner
2023-07-12 14:52:43 -06:00
elif sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
return config_depth_model
elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
return config_unclip
elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
return config_unopenclip
if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
if diffusion_model_input.shape[1] == 9:
return config_sd2_inpainting
elif is_using_v_parameterization_for_sd2(sd):
return config_sd2v
else:
return config_sd2
if diffusion_model_input is not None:
if diffusion_model_input.shape[1] == 9:
return config_inpainting
if diffusion_model_input.shape[1] == 8:
return config_instruct_pix2pix
if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
2023-09-23 03:51:41 -06:00
if sd.get('cond_stage_model.transformation.weight').size()[0] == 1024:
return config_alt_diffusion_m18
return config_alt_diffusion
return config_default
def find_checkpoint_config(state_dict, info):
if info is None:
return guess_model_config_from_state_dict(state_dict, "")
config = find_checkpoint_config_near_filename(info)
if config is not None:
return config
return guess_model_config_from_state_dict(state_dict, info.filename)
def find_checkpoint_config_near_filename(info):
if info is None:
return None
config = f"{os.path.splitext(info.filename)[0]}.yaml"
if os.path.exists(config):
return config
return None