stable-diffusion-webui/extensions-builtin/Lora/network_oft.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

119 lines
5.1 KiB
Python
Raw Normal View History

2023-10-18 00:35:50 -06:00
import torch
import network
from einops import rearrange
2023-10-18 00:35:50 -06:00
class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
2023-10-18 00:35:50 -06:00
return NetworkModuleOFT(net, weights)
return None
# Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
# and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
2023-10-18 00:35:50 -06:00
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
2023-10-18 05:16:01 -06:00
2023-10-18 00:35:50 -06:00
super().__init__(net, weights)
self.lin_module = None
2023-11-03 18:52:55 -06:00
self.org_module: list[torch.Module] = [self.sd_module]
self.scale = 1.0
2024-02-20 02:20:14 -07:00
self.is_R = False
2024-02-18 23:43:07 -07:00
self.is_boft = False
2024-02-20 02:20:14 -07:00
# kohya-ss/New LyCORIS OFT/BOFT
if "oft_blocks" in weights.w.keys():
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
2024-02-21 09:43:32 -07:00
self.alpha = weights.w.get("alpha", None) # alpha is constraint
self.dim = self.oft_blocks.shape[0] # lora dim
2024-02-20 02:20:14 -07:00
# Old LyCORIS OFT
elif "oft_diag" in weights.w.keys():
2024-02-20 02:20:14 -07:00
self.is_R = True
self.oft_blocks = weights.w["oft_diag"]
# self.alpha is unused
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
if is_linear:
2023-10-18 00:35:50 -06:00
self.out_dim = self.sd_module.out_features
elif is_conv:
2023-10-18 00:35:50 -06:00
self.out_dim = self.sd_module.out_channels
elif is_other_linear:
self.out_dim = self.sd_module.embed_dim
# LyCORIS BOFT
if self.oft_blocks.dim() == 4:
self.is_boft = True
self.rescale = weights.w.get('rescale', None)
if self.rescale is not None and not is_other_linear:
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))
2024-02-20 02:20:14 -07:00
self.num_blocks = self.dim
self.block_size = self.out_dim // self.dim
2024-02-21 09:43:32 -07:00
self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim
2024-02-20 02:20:14 -07:00
if self.is_R:
2024-02-07 05:51:22 -07:00
self.constraint = None
2024-02-20 02:20:14 -07:00
self.block_size = self.dim
self.num_blocks = self.out_dim // self.dim
elif self.is_boft:
self.boft_m = self.oft_blocks.shape[0]
self.num_blocks = self.oft_blocks.shape[1]
self.block_size = self.oft_blocks.shape[2]
2024-02-08 12:55:05 -07:00
self.boft_b = self.block_size
2023-12-13 10:38:32 -07:00
def calc_updown(self, orig_weight):
2024-01-05 01:31:48 -07:00
oft_blocks = self.oft_blocks.to(orig_weight.device)
eye = torch.eye(self.block_size, device=oft_blocks.device)
2024-02-20 02:20:14 -07:00
if not self.is_R:
2024-02-21 07:50:43 -07:00
block_Q = oft_blocks - oft_blocks.transpose(-1, -2) # ensure skew-symmetric orthogonal matrix
2024-02-21 09:43:32 -07:00
if self.constraint != 0:
norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
2023-10-22 09:54:24 -06:00
2024-01-05 01:31:48 -07:00
R = oft_blocks.to(orig_weight.device)
2023-10-18 00:35:50 -06:00
2024-02-07 05:49:17 -07:00
if not self.is_boft:
# This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R,
merged_weight
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
else:
2024-02-08 22:58:59 -07:00
# TODO: determine correct value for scale
2024-02-07 05:49:17 -07:00
scale = 1.0
2024-02-08 12:55:05 -07:00
m = self.boft_m
b = self.boft_b
2024-02-07 05:49:17 -07:00
r_b = b // 2
inp = orig_weight
for i in range(m):
bi = R[i] # b_num, b_size, b_size
if i == 0:
# Apply multiplier/scale and rescale into first weight
2024-02-07 05:55:11 -07:00
bi = bi * scale + (1 - scale) * eye
2024-02-07 05:49:17 -07:00
inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b)
inp = rearrange(inp, "(d b) ... -> d b ...", b=b)
inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp)
inp = rearrange(inp, "d b ... -> (d b) ...")
inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b)
merged_weight = inp
2023-10-18 00:35:50 -06:00
# Rescale mechanism
if self.rescale is not None:
merged_weight = self.rescale.to(merged_weight) * merged_weight
2024-01-05 01:31:48 -07:00
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
output_shape = orig_weight.shape
2023-10-18 00:35:50 -06:00
return self.finalize_updown(updown, orig_weight, output_shape)