stable-diffusion-webui/modules/hypernetworks/ui.py

64 lines
2.2 KiB
Python
Raw Normal View History

2022-10-07 14:22:22 -06:00
import html
import os
import re
2022-10-07 14:22:22 -06:00
import gradio as gr
import modules.textual_inversion.preprocess
2022-10-22 05:07:00 -06:00
import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack, shared
from modules.hypernetworks import hypernetwork
2022-10-07 14:22:22 -06:00
keys = list(hypernetwork.HypernetworkModule.activation_dict.keys())
2022-10-07 14:22:22 -06:00
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
2022-10-21 03:11:12 -06:00
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
2022-10-07 14:22:22 -06:00
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
2022-10-19 17:09:40 -06:00
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists"
2022-10-07 14:22:22 -06:00
if type(layer_structure) == str:
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
name=name,
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
2022-10-19 18:10:45 -06:00
activation_func=activation_func,
weight_init=weight_init,
2022-10-22 05:07:00 -06:00
add_layer_norm=add_layer_norm,
use_dropout=use_dropout,
)
2022-10-11 05:53:02 -06:00
hypernet.save(fn)
2022-10-07 14:22:22 -06:00
shared.reload_hypernetworks()
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
def train_hypernetwork(*args):
2022-10-11 05:53:02 -06:00
initial_hypernetwork = shared.loaded_hypernetwork
2022-10-07 14:22:22 -06:00
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
2022-10-07 14:22:22 -06:00
try:
sd_hijack.undo_optimizations()
2022-10-11 06:54:34 -06:00
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
2022-10-07 14:22:22 -06:00
res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
Hypernetwork saved to {html.escape(filename)}
"""
return res, ""
except Exception:
raise
finally:
2022-10-11 05:53:02 -06:00
shared.loaded_hypernetwork = initial_hypernetwork
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
2022-10-07 14:22:22 -06:00
sd_hijack.apply_optimizations()