2023-07-11 12:16:43 -06:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import sgm.models.diffusion
|
|
|
|
import sgm.modules.diffusionmodules.denoiser_scaling
|
|
|
|
import sgm.modules.diffusionmodules.discretizer
|
2023-07-12 14:52:43 -06:00
|
|
|
from modules import devices, shared, prompt_parser
|
2023-07-11 12:16:43 -06:00
|
|
|
|
|
|
|
|
2023-07-12 14:52:43 -06:00
|
|
|
def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: prompt_parser.SdConditioning | list[str]):
|
2023-07-11 12:16:43 -06:00
|
|
|
for embedder in self.conditioner.embedders:
|
|
|
|
embedder.ucg_rate = 0.0
|
|
|
|
|
2023-07-12 14:52:43 -06:00
|
|
|
width = getattr(self, 'target_width', 1024)
|
|
|
|
height = getattr(self, 'target_height', 1024)
|
|
|
|
|
|
|
|
sdxl_conds = {
|
|
|
|
"txt": batch,
|
|
|
|
"original_size_as_tuple": torch.tensor([height, width]).repeat(len(batch), 1).to(devices.device, devices.dtype),
|
|
|
|
"crop_coords_top_left": torch.tensor([shared.opts.sdxl_crop_top, shared.opts.sdxl_crop_left]).repeat(len(batch), 1).to(devices.device, devices.dtype),
|
|
|
|
"target_size_as_tuple": torch.tensor([height, width]).repeat(len(batch), 1).to(devices.device, devices.dtype),
|
|
|
|
}
|
|
|
|
|
2023-07-13 02:35:52 -06:00
|
|
|
force_zero_negative_prompt = getattr(batch, 'is_negative_prompt', False) and all(x == '' for x in batch)
|
|
|
|
c = self.conditioner(sdxl_conds, force_zero_embeddings=['txt'] if force_zero_negative_prompt else [])
|
2023-07-11 12:16:43 -06:00
|
|
|
|
|
|
|
return c
|
|
|
|
|
|
|
|
|
|
|
|
def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond):
|
|
|
|
return self.model(x, t, cond)
|
|
|
|
|
|
|
|
|
2023-07-13 07:18:39 -06:00
|
|
|
def get_first_stage_encoding(self, x): # SDXL's encode_first_stage does everything so get_first_stage_encoding is just there for compatibility
|
|
|
|
return x
|
|
|
|
|
2023-07-11 12:16:43 -06:00
|
|
|
def extend_sdxl(model):
|
|
|
|
dtype = next(model.model.diffusion_model.parameters()).dtype
|
|
|
|
model.model.diffusion_model.dtype = dtype
|
|
|
|
model.model.conditioning_key = 'crossattn'
|
|
|
|
|
2023-07-12 14:52:43 -06:00
|
|
|
model.cond_stage_model = [x for x in model.conditioner.embedders if 'CLIPEmbedder' in type(x).__name__][0]
|
2023-07-11 12:16:43 -06:00
|
|
|
model.cond_stage_key = model.cond_stage_model.input_key
|
|
|
|
|
|
|
|
model.parameterization = "v" if isinstance(model.denoiser.scaling, sgm.modules.diffusionmodules.denoiser_scaling.VScaling) else "eps"
|
|
|
|
|
|
|
|
discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
|
|
|
|
model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype)
|
|
|
|
|
2023-07-12 14:52:43 -06:00
|
|
|
|
2023-07-11 12:16:43 -06:00
|
|
|
|
|
|
|
sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning
|
|
|
|
sgm.models.diffusion.DiffusionEngine.apply_model = apply_model
|
2023-07-13 07:18:39 -06:00
|
|
|
sgm.models.diffusion.DiffusionEngine.get_first_stage_encoding = get_first_stage_encoding
|
2023-07-11 12:16:43 -06:00
|
|
|
|
2023-07-12 14:52:43 -06:00
|
|
|
sgm.modules.attention.print = lambda *args: None
|
|
|
|
sgm.modules.diffusionmodules.model.print = lambda *args: None
|
|
|
|
sgm.modules.diffusionmodules.openaimodel.print = lambda *args: None
|
|
|
|
sgm.modules.encoders.modules.print = lambda *args: None
|
|
|
|
|
2023-07-13 00:30:33 -06:00
|
|
|
# this gets the code to load the vanilla attention that we override
|
|
|
|
sgm.modules.attention.SDP_IS_AVAILABLE = True
|
2023-07-13 00:38:54 -06:00
|
|
|
sgm.modules.attention.XFORMERS_IS_AVAILABLE = False
|