stable-diffusion-webui/modules/sd_samplers.py

553 lines
23 KiB
Python
Raw Normal View History

from collections import namedtuple, deque
import numpy as np
from math import floor
import torch
import tqdm
from PIL import Image
2022-09-28 01:49:07 -06:00
import inspect
import k_diffusion.sampling
import torchsde._brownian.brownian_interval
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
2022-12-24 12:39:00 -07:00
from modules import prompt_parser, devices, processing, images, sd_vae_approx
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
2022-09-03 08:21:15 -06:00
2022-10-06 05:12:52 -06:00
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
2022-09-03 08:21:15 -06:00
samplers_k_diffusion = [
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
2022-10-06 05:12:52 -06:00
('Euler', 'sample_euler', ['k_euler'], {}),
('LMS', 'sample_lms', ['k_lms'], {}),
('Heun', 'sample_heun', ['k_heun'], {}),
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}),
2022-11-05 09:32:22 -06:00
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
2022-11-22 07:24:50 -07:00
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
2022-10-06 05:12:52 -06:00
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
2022-11-05 09:32:22 -06:00
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
2022-11-22 07:24:50 -07:00
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
2022-09-03 08:21:15 -06:00
]
samplers_data_k_diffusion = [
2022-10-06 05:12:52 -06:00
SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_k_diffusion
2022-09-03 08:21:15 -06:00
if hasattr(k_diffusion.sampling, funcname)
]
all_samplers = [
2022-09-03 08:21:15 -06:00
*samplers_data_k_diffusion,
2022-10-06 05:12:52 -06:00
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
]
all_samplers_map = {x.name: x for x in all_samplers}
samplers = []
samplers_for_img2img = []
samplers_map = {}
def create_sampler(name, model):
if name is not None:
config = all_samplers_map.get(name, None)
else:
config = all_samplers[0]
assert config is not None, f'bad sampler name: {name}'
2022-10-06 05:12:52 -06:00
sampler = config.constructor(model)
sampler.config = config
2022-10-06 05:12:52 -06:00
return sampler
def set_samplers():
global samplers, samplers_for_img2img
hidden = set(opts.hide_samplers)
hidden_img2img = set(opts.hide_samplers + ['PLMS'])
samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
samplers_map.clear()
for sampler in all_samplers:
samplers_map[sampler.name.lower()] = sampler.name
for alias in sampler.aliases:
samplers_map[alias.lower()] = sampler.name
set_samplers()
sampler_extra_params = {
2022-09-28 01:49:07 -06:00
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
}
2022-09-19 07:42:56 -06:00
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
requested_steps = (steps or p.steps)
steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = requested_steps - 1
else:
steps = p.steps
t_enc = int(min(p.denoising_strength, 0.999) * steps)
return steps, t_enc
2022-12-24 12:39:00 -07:00
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
def single_sample_to_image(sample, approximation=None):
if approximation is None:
approximation = approximation_indexes.get(opts.show_progress_type, 0)
if approximation == 2:
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
else:
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
2022-12-24 12:39:00 -07:00
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
2022-12-24 12:39:00 -07:00
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
2022-12-24 12:39:00 -07:00
def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
def store_latent(decoded):
state.current_latent = decoded
if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed:
shared.state.assign_current_image(sample_to_image(decoded))
class InterruptedException(BaseException):
pass
class VanillaStableDiffusionSampler:
def __init__(self, constructor, sd_model):
self.sampler = constructor(sd_model)
2022-11-26 06:10:46 -07:00
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
self.mask = None
self.nmask = None
self.init_latent = None
self.sampler_noises = None
2022-09-15 04:10:16 -06:00
self.step = 0
self.stop_at = None
self.eta = None
self.default_eta = 0.0
2022-10-06 05:12:52 -06:00
self.config = None
self.last_latent = None
2022-09-15 04:10:16 -06:00
self.conditioning_key = sd_model.model.conditioning_key
def number_of_needed_noises(self, p):
return 0
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except InterruptedException:
return self.last_latent
2022-09-15 04:10:16 -06:00
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
if state.interrupted or state.skipped:
raise InterruptedException
if self.stop_at is not None and self.step > self.stop_at:
raise InterruptedException
# Have to unwrap the inpainting conditioning here to perform pre-processing
image_conditioning = None
if isinstance(cond, dict):
image_conditioning = cond["c_concat"][0]
cond = cond["c_crossattn"][0]
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
2022-09-15 04:10:16 -06:00
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
cond = tensor
# for DDIM, shapes must match, we can't just process cond and uncond independently;
# filling unconditional_conditioning with repeats of the last vector to match length is
# not 100% correct but should work well enough
if unconditional_conditioning.shape[1] < cond.shape[1]:
last_vector = unconditional_conditioning[:, -1:]
last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
elif unconditional_conditioning.shape[1] > cond.shape[1]:
unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
2022-09-15 04:10:16 -06:00
if self.mask is not None:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
if image_conditioning is not None:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
2022-09-15 04:10:16 -06:00
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
if self.mask is not None:
self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
2022-09-15 04:10:16 -06:00
else:
self.last_latent = res[1]
store_latent(self.last_latent)
2022-09-15 04:10:16 -06:00
self.step += 1
state.sampling_step = self.step
shared.total_tqdm.update()
2022-09-15 04:10:16 -06:00
return res
def initialize(self, p):
self.eta = p.eta if p.eta is not None else opts.eta_ddim
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
def adjust_steps_if_invalid(self, p, num_steps):
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
valid_step = 999 / (1000 // num_steps)
if valid_step == floor(valid_step):
return int(valid_step) + 1
return num_steps
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
2022-09-19 07:42:56 -06:00
steps, t_enc = setup_img2img_steps(p, steps)
steps = self.adjust_steps_if_invalid(p, steps)
2022-09-28 13:30:52 -06:00
self.initialize(p)
self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
2022-09-19 07:42:56 -06:00
self.init_latent = x
self.last_latent = x
self.step = 0
2022-10-19 15:14:24 -06:00
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
2022-10-21 08:46:32 -06:00
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
self.initialize(p)
2022-09-08 10:20:41 -06:00
self.init_latent = None
self.last_latent = x
self.step = 0
2022-09-08 10:20:41 -06:00
steps = self.adjust_steps_if_invalid(p, steps or p.steps)
2022-09-19 07:42:56 -06:00
# Wrap the conditioning models with additional image conditioning for inpainting model
2022-11-26 06:10:46 -07:00
# dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
if image_conditioning is not None:
2022-11-26 06:10:46 -07:00
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
2022-09-13 11:12:24 -06:00
return samples_ddim
class CFGDenoiser(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
self.mask = None
self.nmask = None
self.init_latent = None
2022-09-15 04:10:16 -06:00
self.step = 0
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:]
denoised = torch.clone(denoised_uncond)
for i, conds in enumerate(conds_list):
for cond_index, weight in conds:
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
return denoised
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
if state.interrupted or state.skipped:
raise InterruptedException
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
2022-09-15 04:10:16 -06:00
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
cfg_denoiser_callback(denoiser_params)
x_in = denoiser_params.x
image_cond_in = denoiser_params.image_cond
sigma_in = denoiser_params.sigma
2022-10-30 17:48:33 -06:00
if tensor.shape[1] == uncond.shape[1]:
cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
else:
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
for batch_offset in range(0, tensor.shape[0], batch_size):
a = batch_offset
b = min(a + batch_size, tensor.shape[0])
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
devices.test_for_nans(x_out, "unet")
if opts.live_preview_content == "Prompt":
store_latent(x_out[0:uncond.shape[0]])
elif opts.live_preview_content == "Negative prompt":
store_latent(x_out[-uncond.shape[0]:])
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
2022-09-15 04:10:16 -06:00
self.step += 1
return denoised
class TorchHijack:
def __init__(self, sampler_noises):
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
if x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
# MPS fix for randn in torchsde
def torchsde_randn(size, dtype, device, seed):
if device.type == 'mps':
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
else:
generator = torch.Generator(device).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=device, generator=generator)
torchsde._brownian.brownian_interval._randn = torchsde_randn
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
2022-11-26 06:10:46 -07:00
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname)
2022-09-28 01:49:07 -06:00
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None
2022-09-19 07:42:56 -06:00
self.stop_at = None
self.eta = None
self.default_eta = 1.0
2022-10-06 05:12:52 -06:00
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
2022-09-06 10:33:51 -06:00
def callback_state(self, d):
step = d['i']
latent = d["denoised"]
if opts.live_preview_content == "Combined":
store_latent(latent)
self.last_latent = latent
if self.stop_at is not None and step > self.stop_at:
raise InterruptedException
state.sampling_step = step
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except InterruptedException:
return self.last_latent
2022-09-06 10:33:51 -06:00
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p):
2022-09-19 07:42:56 -06:00
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0
self.eta = p.eta or opts.eta_ancestral
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
extra_params_kwargs = {}
2022-09-28 01:49:07 -06:00
for param_name in self.extra_params:
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
extra_params_kwargs['eta'] = self.eta
return extra_params_kwargs
def get_sigmas(self, p, steps):
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
discard_next_to_last_sigma = True
p.extra_generation_params["Discard penultimate sigma"] = True
steps += 1 if discard_next_to_last_sigma else 0
2022-12-26 13:49:13 -07:00
if p.sampler_noise_scheduler_override:
2022-10-06 14:27:01 -06:00
sigmas = p.sampler_noise_scheduler_override(steps)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
else:
2022-10-06 14:27:01 -06:00
sigmas = self.model_wrap.get_sigmas(steps)
if discard_next_to_last_sigma:
2022-12-18 20:16:42 -07:00
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
sigmas = self.get_sigmas(p, steps)
sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
2022-10-10 17:36:00 -06:00
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x
self.last_latent = x
2022-10-21 08:46:32 -06:00
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
2022-09-19 07:42:56 -06:00
steps = steps or p.steps
sigmas = self.get_sigmas(p, steps)
2022-10-06 05:12:52 -06:00
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)
2022-09-29 01:15:38 -06:00
if 'sigma_min' in inspect.signature(self.func).parameters:
2022-09-29 04:30:33 -06:00
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
2022-09-29 01:15:38 -06:00
if 'n' in inspect.signature(self.func).parameters:
2022-09-29 04:30:33 -06:00
extra_params_kwargs['n'] = steps
else:
extra_params_kwargs['sigmas'] = sigmas
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
2022-09-19 07:42:56 -06:00
return samples