Reload VAE without reloading sd checkpoint

This commit is contained in:
Muhammad Rizqi Nur 2022-11-02 12:51:46 +07:00
parent f8c6468d42
commit 056f06d373
3 changed files with 98 additions and 18 deletions

View File

@ -159,15 +159,13 @@ def get_state_dict_from_checkpoint(pl_sd):
return pl_sd return pl_sd
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
def load_model_weights(model, checkpoint_info, vae_file="auto"): def load_model_weights(model, checkpoint_info, vae_file="auto"):
checkpoint_file = checkpoint_info.filename checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash sd_model_hash = checkpoint_info.hash
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
checkpoint_key = (checkpoint_info, vae_file) checkpoint_key = checkpoint_info
if checkpoint_key not in checkpoints_loaded: if checkpoint_key not in checkpoints_loaded:
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
@ -190,13 +188,12 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
sd_vae.load_vae(model, vae_file)
model.first_stage_model.to(devices.dtype_vae)
if shared.opts.sd_checkpoint_cache > 0: if shared.opts.sd_checkpoint_cache > 0:
# if PR #4035 were to get merged, restore base VAE first before caching
checkpoints_loaded[checkpoint_key] = model.state_dict().copy() checkpoints_loaded[checkpoint_key] = model.state_dict().copy()
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
checkpoints_loaded.popitem(last=False) # LRU checkpoints_loaded.popitem(last=False) # LRU
else: else:
vae_name = sd_vae.get_filename(vae_file) vae_name = sd_vae.get_filename(vae_file)
print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache") print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache")
@ -207,6 +204,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
model.sd_model_checkpoint = checkpoint_file model.sd_model_checkpoint = checkpoint_file
model.sd_checkpoint_info = checkpoint_info model.sd_checkpoint_info = checkpoint_info
sd_vae.load_vae(model, vae_file)
def load_model(checkpoint_info=None): def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack from modules import lowvram, sd_hijack
@ -254,14 +253,14 @@ def load_model(checkpoint_info=None):
return sd_model return sd_model
def reload_model_weights(sd_model=None, info=None, force=False): def reload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint() checkpoint_info = info or select_checkpoint()
if not sd_model: if not sd_model:
sd_model = shared.sd_model sd_model = shared.sd_model
if sd_model.sd_model_checkpoint == checkpoint_info.filename and not force: if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return return
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):

View File

@ -1,26 +1,65 @@
import torch import torch
import os import os
from collections import namedtuple from collections import namedtuple
from modules import shared, devices from modules import shared, devices, script_callbacks
from modules.paths import models_path from modules.paths import models_path
import glob import glob
model_dir = "Stable-diffusion" model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir)) model_path = os.path.abspath(os.path.join(models_path, model_dir))
vae_dir = "VAE" vae_dir = "VAE"
vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) vae_path = os.path.abspath(os.path.join(models_path, vae_dir))
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
default_vae_dict = {"auto": "auto", "None": "None"} default_vae_dict = {"auto": "auto", "None": "None"}
default_vae_list = ["auto", "None"] default_vae_list = ["auto", "None"]
default_vae_values = [default_vae_dict[x] for x in default_vae_list] default_vae_values = [default_vae_dict[x] for x in default_vae_list]
vae_dict = dict(default_vae_dict) vae_dict = dict(default_vae_dict)
vae_list = list(default_vae_list) vae_list = list(default_vae_list)
first_load = True first_load = True
base_vae = None
loaded_vae_file = None
checkpoint_info = None
def get_base_vae(model):
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
return base_vae
return None
def store_base_vae(model):
global base_vae, checkpoint_info
if checkpoint_info != model.sd_checkpoint_info:
base_vae = model.first_stage_model.state_dict().copy()
checkpoint_info = model.sd_checkpoint_info
def delete_base_vae():
global base_vae, checkpoint_info
base_vae = None
checkpoint_info = None
def restore_base_vae(model):
global base_vae, checkpoint_info
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
load_vae_dict(model, base_vae)
delete_base_vae()
def get_filename(filepath): def get_filename(filepath):
return os.path.splitext(os.path.basename(filepath))[0] return os.path.splitext(os.path.basename(filepath))[0]
def refresh_vae_list(vae_path=vae_path, model_path=model_path): def refresh_vae_list(vae_path=vae_path, model_path=model_path):
global vae_dict, vae_list global vae_dict, vae_list
res = {} res = {}
@ -43,6 +82,7 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path):
vae_dict.update(res) vae_dict.update(res)
return vae_list return vae_list
def resolve_vae(checkpoint_file, vae_file="auto"): def resolve_vae(checkpoint_file, vae_file="auto"):
global first_load, vae_dict, vae_list global first_load, vae_dict, vae_list
# save_settings = False # save_settings = False
@ -96,24 +136,26 @@ def resolve_vae(checkpoint_file, vae_file="auto"):
return vae_file return vae_file
def load_vae(model, vae_file):
global first_load, vae_dict, vae_list def load_vae(model, vae_file=None):
global first_load, vae_dict, vae_list, loaded_vae_file
# save_settings = False # save_settings = False
if vae_file: if vae_file:
print(f"Loading VAE weights from: {vae_file}") print(f"Loading VAE weights from: {vae_file}")
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
model.first_stage_model.load_state_dict(vae_dict_1) load_vae_dict(model, vae_dict_1)
# If vae used is not in dict, update it # If vae used is not in dict, update it
# It will be removed on refresh though # It will be removed on refresh though
if vae_file is not None:
vae_opt = get_filename(vae_file) vae_opt = get_filename(vae_file)
if vae_opt not in vae_dict: if vae_opt not in vae_dict:
vae_dict[vae_opt] = vae_file vae_dict[vae_opt] = vae_file
vae_list.append(vae_opt) vae_list.append(vae_opt)
loaded_vae_file = vae_file
""" """
# Save current VAE to VAE settings, maybe? will it work? # Save current VAE to VAE settings, maybe? will it work?
if save_settings: if save_settings:
@ -124,4 +166,45 @@ def load_vae(model, vae_file):
""" """
first_load = False first_load = False
# don't call this from outside
def load_vae_dict(model, vae_dict_1=None):
if vae_dict_1:
store_base_vae(model)
model.first_stage_model.load_state_dict(vae_dict_1)
else:
restore_base_vae()
model.first_stage_model.to(devices.dtype_vae) model.first_stage_model.to(devices.dtype_vae)
def reload_vae_weights(sd_model=None, vae_file="auto"):
from modules import lowvram, devices, sd_hijack
if not sd_model:
sd_model = shared.sd_model
checkpoint_info = sd_model.sd_checkpoint_info
checkpoint_file = checkpoint_info.filename
vae_file = resolve_vae(checkpoint_file, vae_file=vae_file)
if loaded_vae_file == vae_file:
return
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(sd_model)
load_vae(sd_model, vae_file)
sd_hijack.model_hijack.hijack(sd_model)
script_callbacks.model_loaded_callback(sd_model)
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
print(f"VAE Weights loaded.")
return sd_model

View File

@ -81,9 +81,7 @@ def initialize():
modules.sd_vae.refresh_vae_list() modules.sd_vae.refresh_vae_list()
modules.sd_models.load_model() modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
# I don't know what needs to be done to only reload VAE, with all those hijacks callbacks, and lowvram, shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
# so for now this reloads the whole model too
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(force=True)), call=False)
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)