integrate the new samplers PR
This commit is contained in:
parent
a971e4a767
commit
5993df24a1
|
@ -477,7 +477,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||
self.firstphase_height_truncated = int(scale * self.height)
|
||||
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
||||
self.sampler = sd_samplers.samplers[self.sampler_index].constructor(self.sd_model)
|
||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
||||
|
||||
if not self.enable_hr:
|
||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
|
@ -520,7 +520,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||
|
||||
shared.state.nextjob()
|
||||
|
||||
self.sampler = sd_samplers.samplers[self.sampler_index].constructor(self.sd_model)
|
||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
||||
|
||||
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
|
||||
# GC now before running the next img2img to prevent running out of memory
|
||||
|
@ -555,7 +556,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
self.nmask = None
|
||||
|
||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||
self.sampler = sd_samplers.samplers_for_img2img[self.sampler_index].constructor(self.sd_model)
|
||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
|
||||
crop_region = None
|
||||
|
||||
if self.image_mask is not None:
|
||||
|
|
|
@ -13,46 +13,46 @@ from modules.shared import opts, cmd_opts, state
|
|||
import modules.shared as shared
|
||||
|
||||
|
||||
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases'])
|
||||
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
|
||||
|
||||
samplers_k_diffusion = [
|
||||
('Euler a', 'sample_euler_ancestral', ['k_euler_a']),
|
||||
('Euler', 'sample_euler', ['k_euler']),
|
||||
('LMS', 'sample_lms', ['k_lms']),
|
||||
('Heun', 'sample_heun', ['k_heun']),
|
||||
('DPM2', 'sample_dpm_2', ['k_dpm_2']),
|
||||
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']),
|
||||
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast']),
|
||||
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad']),
|
||||
('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
|
||||
('Euler', 'sample_euler', ['k_euler'], {}),
|
||||
('LMS', 'sample_lms', ['k_lms'], {}),
|
||||
('Heun', 'sample_heun', ['k_heun'], {}),
|
||||
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
|
||||
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
|
||||
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
|
||||
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
|
||||
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
|
||||
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
|
||||
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
|
||||
]
|
||||
|
||||
if opts.show_karras_scheduler_variants:
|
||||
k_diffusion.sampling.sample_dpm_2_ka = k_diffusion.sampling.sample_dpm_2
|
||||
k_diffusion.sampling.sample_dpm_2_ancestral_ka = k_diffusion.sampling.sample_dpm_2_ancestral
|
||||
k_diffusion.sampling.sample_lms_ka = k_diffusion.sampling.sample_lms
|
||||
samplers_k_diffusion_ka = [
|
||||
('LMS K Scheduling', 'sample_lms_ka', ['k_lms_ka']),
|
||||
('DPM2 K Scheduling', 'sample_dpm_2_ka', ['k_dpm_2_ka']),
|
||||
('DPM2 a K Scheduling', 'sample_dpm_2_ancestral_ka', ['k_dpm_2_a_ka']),
|
||||
]
|
||||
samplers_k_diffusion.extend(samplers_k_diffusion_ka)
|
||||
|
||||
samplers_data_k_diffusion = [
|
||||
SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases)
|
||||
for label, funcname, aliases in samplers_k_diffusion
|
||||
SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
|
||||
for label, funcname, aliases, options in samplers_k_diffusion
|
||||
if hasattr(k_diffusion.sampling, funcname)
|
||||
]
|
||||
|
||||
all_samplers = [
|
||||
*samplers_data_k_diffusion,
|
||||
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []),
|
||||
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []),
|
||||
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
|
||||
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
|
||||
]
|
||||
|
||||
samplers = []
|
||||
samplers_for_img2img = []
|
||||
|
||||
|
||||
def create_sampler_with_index(list_of_configs, index, model):
|
||||
config = list_of_configs[index]
|
||||
sampler = config.constructor(model)
|
||||
sampler.config = config
|
||||
|
||||
return sampler
|
||||
|
||||
|
||||
def set_samplers():
|
||||
global samplers, samplers_for_img2img
|
||||
|
||||
|
@ -130,6 +130,7 @@ class VanillaStableDiffusionSampler:
|
|||
self.step = 0
|
||||
self.eta = None
|
||||
self.default_eta = 0.0
|
||||
self.config = None
|
||||
|
||||
def number_of_needed_noises(self, p):
|
||||
return 0
|
||||
|
@ -291,6 +292,7 @@ class KDiffusionSampler:
|
|||
self.stop_at = None
|
||||
self.eta = None
|
||||
self.default_eta = 1.0
|
||||
self.config = None
|
||||
|
||||
def callback_state(self, d):
|
||||
store_latent(d["denoised"])
|
||||
|
@ -355,11 +357,12 @@ class KDiffusionSampler:
|
|||
steps = steps or p.steps
|
||||
|
||||
if p.sampler_noise_scheduler_override:
|
||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||
elif self.funcname.endswith('ka'):
|
||||
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
|
||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
||||
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
|
||||
else:
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
|
||||
x = x * sigmas[0]
|
||||
|
||||
extra_params_kwargs = self.initialize(p)
|
||||
|
|
|
@ -236,7 +236,6 @@ options_templates.update(options_section(('ui', "User interface"), {
|
|||
"font": OptionInfo("", "Font for image grids that have text"),
|
||||
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
|
||||
"js_modal_lightbox_initialy_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
|
||||
"show_karras_scheduler_variants": OptionInfo(True, "Show Karras scheduling variants for select samplers. Try these variants if your K sampled images suffer from excessive noise."),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
|
||||
|
|
|
@ -1,53 +0,0 @@
|
|||
import inspect
|
||||
from modules.processing import Processed, process_images
|
||||
import gradio as gr
|
||||
import modules.scripts as scripts
|
||||
import k_diffusion.sampling
|
||||
import torch
|
||||
|
||||
|
||||
class Script(scripts.Script):
|
||||
|
||||
def title(self):
|
||||
return "Alternate Sampler Noise Schedules"
|
||||
|
||||
def ui(self, is_img2img):
|
||||
noise_scheduler = gr.Dropdown(label="Noise Scheduler", choices=['Default','Karras','Exponential', 'Variance Preserving'], value='Default', type="index")
|
||||
sched_smin = gr.Slider(value=0.1, label="Sigma min", minimum=0.0, maximum=100.0, step=0.5,)
|
||||
sched_smax = gr.Slider(value=10.0, label="Sigma max", minimum=0.0, maximum=100.0, step=0.5)
|
||||
sched_rho = gr.Slider(value=7.0, label="Sigma rho (Karras only)", minimum=7.0, maximum=100.0, step=0.5)
|
||||
sched_beta_d = gr.Slider(value=19.9, label="Beta distribution (VP only)",minimum=0.0, maximum=40.0, step=0.5)
|
||||
sched_beta_min = gr.Slider(value=0.1, label="Beta min (VP only)", minimum=0.0, maximum=40.0, step=0.1)
|
||||
sched_eps_s = gr.Slider(value=0.001, label="Epsilon (VP only)", minimum=0.001, maximum=1.0, step=0.001)
|
||||
|
||||
return [noise_scheduler, sched_smin, sched_smax, sched_rho, sched_beta_d, sched_beta_min, sched_eps_s]
|
||||
|
||||
def run(self, p, noise_scheduler, sched_smin, sched_smax, sched_rho, sched_beta_d, sched_beta_min, sched_eps_s):
|
||||
|
||||
noise_scheduler_func_name = ['-','get_sigmas_karras','get_sigmas_exponential','get_sigmas_vp'][noise_scheduler]
|
||||
|
||||
base_params = {
|
||||
"sigma_min":sched_smin,
|
||||
"sigma_max":sched_smax,
|
||||
"rho":sched_rho,
|
||||
"beta_d":sched_beta_d,
|
||||
"beta_min":sched_beta_min,
|
||||
"eps_s":sched_eps_s,
|
||||
"device":"cuda" if torch.cuda.is_available() else "cpu"
|
||||
}
|
||||
|
||||
if hasattr(k_diffusion.sampling,noise_scheduler_func_name):
|
||||
|
||||
sigma_func = getattr(k_diffusion.sampling,noise_scheduler_func_name)
|
||||
sigma_func_kwargs = {}
|
||||
|
||||
for k,v in base_params.items():
|
||||
if k in inspect.signature(sigma_func).parameters:
|
||||
sigma_func_kwargs[k] = v
|
||||
|
||||
def substitute_noise_scheduler(n):
|
||||
return sigma_func(n,**sigma_func_kwargs)
|
||||
|
||||
p.sampler_noise_scheduler_override = substitute_noise_scheduler
|
||||
|
||||
return process_images(p)
|
|
@ -8,7 +8,6 @@ import gradio as gr
|
|||
|
||||
from modules import processing, shared, sd_samplers, prompt_parser
|
||||
from modules.processing import Processed
|
||||
from modules.sd_samplers import samplers
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
|
||||
import torch
|
||||
|
@ -159,7 +158,7 @@ class Script(scripts.Script):
|
|||
|
||||
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
|
||||
|
||||
sampler = samplers[p.sampler_index].constructor(p.sd_model)
|
||||
sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model)
|
||||
|
||||
sigmas = sampler.model_wrap.get_sigmas(p.steps)
|
||||
|
||||
|
|
Loading…
Reference in New Issue