Merge branch 'dev' into fix-Hypertile-xyz

This commit is contained in:
AUTOMATIC1111 2024-06-08 10:45:36 +03:00 committed by GitHub
commit 96f907ee09
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 272 additions and 85 deletions

View File

@ -1,3 +1,8 @@
## 1.9.4
### Bug Fixes:
* pin setuptools version to fix the startup error ([#15882](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15882))
## 1.9.3
### Bug Fixes:

View File

@ -260,6 +260,16 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No
loaded_networks.clear()
unavailable_networks = []
for name in names:
if name.lower() in forbidden_network_aliases and available_networks.get(name) is None:
unavailable_networks.append(name)
elif available_network_aliases.get(name) is None:
unavailable_networks.append(name)
if unavailable_networks:
update_available_networks_by_names(unavailable_networks)
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
list_available_networks()
@ -566,22 +576,16 @@ def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
def list_available_networks():
available_networks.clear()
available_network_aliases.clear()
forbidden_network_aliases.clear()
available_network_hash_lookup.clear()
forbidden_network_aliases.update({"none": 1, "Addams": 1})
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
def process_network_files(names: list[str] | None = None):
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in candidates:
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
# if names is provided, only load networks with names in the list
if names and name not in names:
continue
try:
entry = network.NetworkOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
@ -597,6 +601,22 @@ def list_available_networks():
available_network_aliases[entry.alias] = entry
def update_available_networks_by_names(names: list[str]):
process_network_files(names)
def list_available_networks():
available_networks.clear()
available_network_aliases.clear()
forbidden_network_aliases.clear()
available_network_hash_lookup.clear()
forbidden_network_aliases.update({"none": 1, "Addams": 1})
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
process_network_files()
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")

View File

@ -60,7 +60,7 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
else:
sd_version = lora_on_disk.sd_version
if shared.opts.lora_show_all or not enable_filter:
if shared.opts.lora_show_all or not enable_filter or not shared.sd_model:
pass
elif sd_version == network.SdVersion.Unknown:
model_version = network.SdVersion.SDXL if shared.sd_model.is_sdxl else network.SdVersion.SD2 if shared.sd_model.is_sd2 else network.SdVersion.SD1

View File

@ -337,8 +337,8 @@ onOptionsChanged(function() {
let txt2img_textarea, img2img_textarea = undefined;
function restart_reload() {
document.body.style.backgroundColor = "var(--background-fill-primary)";
document.body.innerHTML = '<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>';
var requestPing = function() {
requestGet("./internal/ping", {}, function(data) {
location.reload();

View File

@ -438,15 +438,19 @@ class Api:
self.apply_infotext(txt2imgreq, "txt2img", script_runner=script_runner, mentioned_script_args=infotext_script_args)
selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner)
sampler, scheduler = sd_samplers.get_sampler_and_scheduler(txt2imgreq.sampler_name or txt2imgreq.sampler_index, txt2imgreq.scheduler)
populate = txt2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
"sampler_name": validate_sampler_name(sampler),
"do_not_save_samples": not txt2imgreq.save_images,
"do_not_save_grid": not txt2imgreq.save_images,
})
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
if not populate.scheduler and scheduler != "Automatic":
populate.scheduler = scheduler
args = vars(populate)
args.pop('script_name', None)
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
@ -502,9 +506,10 @@ class Api:
self.apply_infotext(img2imgreq, "img2img", script_runner=script_runner, mentioned_script_args=infotext_script_args)
selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner)
sampler, scheduler = sd_samplers.get_sampler_and_scheduler(img2imgreq.sampler_name or img2imgreq.sampler_index, img2imgreq.scheduler)
populate = img2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
"sampler_name": validate_sampler_name(sampler),
"do_not_save_samples": not img2imgreq.save_images,
"do_not_save_grid": not img2imgreq.save_images,
"mask": mask,
@ -512,6 +517,9 @@ class Api:
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
if not populate.scheduler and scheduler != "Automatic":
populate.scheduler = scheduler
args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
args.pop('script_name', None)

View File

@ -41,7 +41,7 @@ parser.add_argument("--lowvram", action='store_true', help="enable stable diffus
parser.add_argument("--lowram", action='store_true', help="load stable diffusion checkpoint weights to VRAM instead of RAM")
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="does not do anything")
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "half", "autocast"], default="autocast")
parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)

View File

@ -114,6 +114,9 @@ errors.run(enable_tf32, "Enabling TF32")
cpu: torch.device = torch.device("cpu")
fp8: bool = False
# Force fp16 for all models in inference. No casting during inference.
# This flag is controlled by "--precision half" command line arg.
force_fp16: bool = False
device: torch.device = None
device_interrogate: torch.device = None
device_gfpgan: torch.device = None
@ -127,6 +130,8 @@ unet_needs_upcast = False
def cond_cast_unet(input):
if force_fp16:
return input.to(torch.float16)
return input.to(dtype_unet) if unet_needs_upcast else input
@ -206,6 +211,11 @@ def autocast(disable=False):
if disable:
return contextlib.nullcontext()
if force_fp16:
# No casting during inference if force_fp16 is enabled.
# All tensor dtype conversion happens before inference.
return contextlib.nullcontext()
if fp8 and device==cpu:
return torch.autocast("cpu", dtype=torch.bfloat16, enabled=True)
@ -269,3 +279,17 @@ def first_time_calculation():
x = torch.zeros((1, 1, 3, 3)).to(device, dtype)
conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype)
conv2d(x)
def force_model_fp16():
"""
ldm and sgm has modules.diffusionmodules.util.GroupNorm32.forward, which
force conversion of input to float32. If force_fp16 is enabled, we need to
prevent this casting.
"""
assert force_fp16
import sgm.modules.diffusionmodules.util as sgm_util
import ldm.modules.diffusionmodules.util as ldm_util
sgm_util.GroupNorm32 = torch.nn.GroupNorm
ldm_util.GroupNorm32 = torch.nn.GroupNorm
print("ldm/sgm GroupNorm32 replaced with normal torch.nn.GroupNorm due to `--precision half`.")

View File

@ -653,7 +653,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
# WebP and JPG formats have maximum dimension limits of 16383 and 65535 respectively. switch to PNG which has a much higher limit
if (image.height > 65535 or image.width > 65535) and extension.lower() in ("jpg", "jpeg") or (image.height > 16383 or image.width > 16383) and extension.lower() == "webp":
print('Image dimensions too large; saving as PNG')
extension = ".png"
extension = "png"
if save_to_dirs is None:
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)

View File

@ -238,11 +238,6 @@ class StableDiffusionProcessing:
self.styles = []
self.sampler_noise_scheduler_override = None
self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
self.extra_generation_params = self.extra_generation_params or {}
self.override_settings = self.override_settings or {}
@ -259,6 +254,13 @@ class StableDiffusionProcessing:
self.cached_uc = StableDiffusionProcessing.cached_uc
self.cached_c = StableDiffusionProcessing.cached_c
def fill_fields_from_opts(self):
self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
@property
def sd_model(self):
return shared.sd_model
@ -569,7 +571,7 @@ class Processed:
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
self.infotexts = infotexts or [info]
self.infotexts = infotexts or [info] * len(images_list)
self.version = program_version()
def js(self):
@ -794,7 +796,6 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
"Tiling": "True" if p.tiling else None,
**p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None,
@ -842,6 +843,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
# backwards compatibility, fix sampler and scheduler if invalid
sd_samplers.fix_p_invalid_sampler_and_scheduler(p)
res = process_images_inner(p)
finally:
@ -890,6 +894,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
modules.sd_hijack.model_hijack.clear_comments()
p.fill_fields_from_opts()
p.setup_prompts()
if isinstance(seed, list):

View File

@ -486,7 +486,8 @@ def xformers_attention_forward(self, x, context=None, mask=None, **kwargs):
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
q, k, v = (rearrange(t, 'b n (h d) -> b n h d', h=h) for t in (q_in, k_in, v_in))
q, k, v = (t.reshape(t.shape[0], t.shape[1], h, -1) for t in (q_in, k_in, v_in))
del q_in, k_in, v_in
dtype = q.dtype
@ -497,7 +498,8 @@ def xformers_attention_forward(self, x, context=None, mask=None, **kwargs):
out = out.to(dtype)
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
b, n, h, d = out.shape
out = out.reshape(b, n, h * d)
return self.to_out(out)

View File

@ -1,5 +1,7 @@
import torch
from packaging import version
from einops import repeat
import math
from modules import devices
from modules.sd_hijack_utils import CondFunc
@ -36,7 +38,7 @@ th = TorchHijackForUnet()
# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
"""Always make sure inputs to unet are in correct dtype."""
if isinstance(cond, dict):
for y in cond.keys():
if isinstance(cond[y], list):
@ -45,7 +47,59 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
with devices.autocast():
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
if devices.unet_needs_upcast:
return result.float()
else:
return result
# Monkey patch to create timestep embed tensor on device, avoiding a block.
def timestep_embedding(_, timesteps, dim, max_period=10000, repeat_only=False):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
if not repeat_only:
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
else:
embedding = repeat(timesteps, 'b -> b d', d=dim)
return embedding
# Monkey patch to SpatialTransformer removing unnecessary contiguous calls.
# Prevents a lot of unnecessary aten::copy_ calls
def spatial_transformer_forward(_, self, x: torch.Tensor, context=None):
# note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list):
context = [context]
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
x = block(x, context=context[i])
if self.use_linear:
x = self.proj_out(x)
x = x.view(b, h, w, c).permute(0, 3, 1, 2)
if not self.use_linear:
x = self.proj_out(x)
return x + x_in
class GELUHijack(torch.nn.GELU, torch.nn.Module):
@ -64,12 +118,15 @@ def hijack_ddpm_edit():
if not ddpm_edit_hijack:
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model)
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding)
CondFunc('ldm.modules.attention.SpatialTransformer.forward', spatial_transformer_forward)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
@ -81,5 +138,17 @@ CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_s
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model, unet_needs_upcast)
CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model)
CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model)
def timestep_embedding_cast_result(orig_func, timesteps, *args, **kwargs):
if devices.unet_needs_upcast and timesteps.dtype == torch.int64:
dtype = torch.float32
else:
dtype = devices.dtype_unet
return orig_func(timesteps, *args, **kwargs).to(dtype=dtype)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)

View File

@ -1,7 +1,11 @@
import importlib
always_true_func = lambda *args, **kwargs: True
class CondFunc:
def __new__(cls, orig_func, sub_func, cond_func):
def __new__(cls, orig_func, sub_func, cond_func=always_true_func):
self = super(CondFunc, cls).__new__(cls)
if isinstance(orig_func, str):
func_path = orig_func.split('.')
@ -20,13 +24,13 @@ class CondFunc:
print(f"Warning: Failed to resolve {orig_func} for CondFunc hijack")
pass
self.__init__(orig_func, sub_func, cond_func)
return lambda *args, **kwargs: self(*args, **kwargs)
def __init__(self, orig_func, sub_func, cond_func):
self.__orig_func = orig_func
self.__sub_func = sub_func
self.__cond_func = cond_func
def __call__(self, *args, **kwargs):
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
return self.__sub_func(self.__orig_func, *args, **kwargs)
else:
return self.__orig_func(*args, **kwargs)
return lambda *args, **kwargs: self(*args, **kwargs)
def __init__(self, orig_func, sub_func, cond_func):
self.__orig_func = orig_func
self.__sub_func = sub_func
self.__cond_func = cond_func
def __call__(self, *args, **kwargs):
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
return self.__sub_func(self.__orig_func, *args, **kwargs)
else:
return self.__orig_func(*args, **kwargs)

View File

@ -403,6 +403,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
model.float()
model.alphas_cumprod_original = model.alphas_cumprod
devices.dtype_unet = torch.float32
assert shared.cmd_opts.precision != "half", "Cannot use --precision half with --no-half"
timer.record("apply float()")
else:
vae = model.first_stage_model
@ -540,7 +541,7 @@ def repair_config(sd_config):
if hasattr(sd_config.model.params, 'unet_config'):
if shared.cmd_opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False
elif shared.cmd_opts.upcast_sampling:
elif shared.cmd_opts.upcast_sampling or shared.cmd_opts.precision == "half":
sd_config.model.params.unet_config.params.use_fp16 = True
if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
@ -659,10 +660,11 @@ def get_empty_cond(sd_model):
def send_model_to_cpu(m):
if m.lowvram:
lowvram.send_everything_to_cpu()
else:
m.to(devices.cpu)
if m is not None:
if m.lowvram:
lowvram.send_everything_to_cpu()
else:
m.to(devices.cpu)
devices.torch_gc()

View File

@ -1,7 +1,7 @@
from __future__ import annotations
import functools
import logging
from modules import sd_samplers_kdiffusion, sd_samplers_timesteps, sd_samplers_lcm, shared, sd_samplers_common, sd_schedulers
# imports for functions that previously were here and are used by other modules
@ -122,4 +122,11 @@ def get_sampler_and_scheduler(sampler_name, scheduler_name):
return sampler.name, found_scheduler.label
def fix_p_invalid_sampler_and_scheduler(p):
i_sampler_name, i_scheduler = p.sampler_name, p.scheduler
p.sampler_name, p.scheduler = get_sampler_and_scheduler(p.sampler_name, p.scheduler)
if p.sampler_name != i_sampler_name or i_scheduler != p.scheduler:
logging.warning(f'Sampler Scheduler autocorrection: "{i_sampler_name}" -> "{p.sampler_name}", "{i_scheduler}" -> "{p.scheduler}"')
set_samplers()

View File

@ -212,9 +212,16 @@ class CFGDenoiser(torch.nn.Module):
uncond = denoiser_params.text_uncond
skip_uncond = False
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
if shared.opts.skip_early_cond != 0. and self.step / self.total_steps <= shared.opts.skip_early_cond:
skip_uncond = True
self.p.extra_generation_params["Skip Early CFG"] = shared.opts.skip_early_cond
elif (self.step % 2 or shared.opts.s_min_uncond_all) and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
skip_uncond = True
self.p.extra_generation_params["NGMS"] = s_min_uncond
if shared.opts.s_min_uncond_all:
self.p.extra_generation_params["NGMS all steps"] = shared.opts.s_min_uncond_all
if skip_uncond:
x_in = x_in[:-batch_size]
sigma_in = sigma_in[:-batch_size]

View File

@ -4,6 +4,9 @@ import torch
import k_diffusion
import numpy as np
from modules import shared
@dataclasses.dataclass
class Scheduler:
@ -30,6 +33,41 @@ def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
sigs += [0.0]
return torch.FloatTensor(sigs).to(device)
def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device='cpu'):
# https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
if shared.sd_model.is_sdxl:
sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
else:
# Default to SD 1.5 sigmas.
sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]
if n != len(sigmas):
sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
else:
sigmas.append(0.0)
return torch.FloatTensor(sigmas).to(device)
def kl_optimal(n, sigma_min, sigma_max, device):
alpha_min = torch.arctan(torch.tensor(sigma_min, device=device))
alpha_max = torch.arctan(torch.tensor(sigma_max, device=device))
step_indices = torch.arange(n + 1, device=device)
sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
return sigmas
schedulers = [
Scheduler('automatic', 'Automatic', None),
@ -38,6 +76,8 @@ schedulers = [
Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
]
schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}

View File

@ -31,6 +31,14 @@ def initialize():
devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
devices.dtype_inference = torch.float32 if cmd_opts.precision == 'full' else devices.dtype
if cmd_opts.precision == "half":
msg = "--no-half and --no-half-vae conflict with --precision half"
assert devices.dtype == torch.float16, msg
assert devices.dtype_vae == torch.float16, msg
assert devices.dtype_inference == torch.float16, msg
devices.force_fp16 = True
devices.force_model_fp16()
shared.device = devices.device
shared.weight_load_location = None if cmd_opts.lowram else "cpu"

View File

@ -209,7 +209,8 @@ options_templates.update(options_section(('img2img', "img2img", "sd"), {
options_templates.update(options_section(('optimizations', "Optimizations", "sd"), {
"cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
"s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
"s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}, infotext='NGMS').link("PR", "https://github.com/AUTOMATIC1111/stablediffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
"s_min_uncond_all": OptionInfo(False, "Negative Guidance minimum sigma all steps", infotext='NGMS all steps').info("By default, NGMS above skips every other step; this makes it skip all steps"),
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio hr').info("only applies if non-zero and overrides above"),
@ -380,7 +381,8 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}, infotext='UniPC skip type'),
'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"),
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final", infotext='UniPC lower order final'),
'sd_noise_schedule': OptionInfo("Default", "Noise schedule for sampling", gr.Radio, {"choices": ["Default", "Zero Terminal SNR"]}, infotext="Noise Schedule").info("for use with zero terminal SNR trained models")
'sd_noise_schedule': OptionInfo("Default", "Noise schedule for sampling", gr.Radio, {"choices": ["Default", "Zero Terminal SNR"]}, infotext="Noise Schedule").info("for use with zero terminal SNR trained models"),
'skip_early_cond': OptionInfo(0.0, "Ignore negative prompt during early sampling", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext="Skip Early CFG").info("disables CFG on a proportion of steps at the beginning of generation; 0=skip none; 1=skip all; can both improve sample diversity/quality and speed up sampling"),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing", "postprocessing"), {

View File

@ -1,3 +1,4 @@
setuptools==69.5.1 # temp fix for compatibility with some old packages
GitPython==3.1.32
Pillow==9.5.0
accelerate==0.21.0

View File

@ -106,17 +106,6 @@ def confirm_range(min_val, max_val, axis_label):
return confirm_range_fun
def apply_clip_skip(p, x, xs):
opts.data["CLIP_stop_at_last_layers"] = x
def apply_upscale_latent_space(p, x, xs):
if x.lower().strip() != '0':
opts.data["use_scale_latent_for_hires_fix"] = True
else:
opts.data["use_scale_latent_for_hires_fix"] = False
def apply_size(p, x: str, xs) -> None:
try:
width, _, height = x.partition('x')
@ -129,21 +118,16 @@ def apply_size(p, x: str, xs) -> None:
def find_vae(name: str):
if name.lower() in ['auto', 'automatic']:
return modules.sd_vae.unspecified
if name.lower() == 'none':
return None
else:
choices = [x for x in sorted(modules.sd_vae.vae_dict, key=lambda x: len(x)) if name.lower().strip() in x.lower()]
if len(choices) == 0:
print(f"No VAE found for {name}; using automatic")
return modules.sd_vae.unspecified
else:
return modules.sd_vae.vae_dict[choices[0]]
match name := name.lower().strip():
case 'auto', 'automatic':
return 'Automatic'
case 'none':
return 'None'
return next((k for k in modules.sd_vae.vae_dict if k.lower() == name), print(f'No VAE found for {name}; using Automatic') or 'Automatic')
def apply_vae(p, x, xs):
modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=find_vae(x))
p.override_settings['sd_vae'] = find_vae(x)
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
@ -151,7 +135,7 @@ def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
def apply_uni_pc_order(p, x, xs):
opts.data["uni_pc_order"] = min(x, p.steps - 1)
p.override_settings['uni_pc_order'] = min(x, p.steps - 1)
def apply_face_restore(p, opt, x):
@ -277,13 +261,13 @@ axis_options = [
AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
AxisOption("Schedule rho", float, apply_override("rho")),
AxisOption("Eta", float, apply_field("eta")),
AxisOption("Clip skip", int, apply_clip_skip),
AxisOption("Clip skip", int, apply_override('CLIP_stop_at_last_layers')),
AxisOption("Denoising", float, apply_field("denoising_strength")),
AxisOption("Initial noise multiplier", float, apply_field("initial_noise_multiplier")),
AxisOption("Extra noise", float, apply_override("img2img_extra_noise")),
AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ['None'] + list(sd_vae.vae_dict)),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ['Automatic', 'None'] + list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
AxisOption("UniPC Order", int, apply_uni_pc_order, cost=0.5),
AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
@ -412,18 +396,12 @@ def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend
class SharedSettingsStackHelper(object):
def __enter__(self):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.vae = opts.sd_vae
self.uni_pc_order = opts.uni_pc_order
pass
def __exit__(self, exc_type, exc_value, tb):
opts.data["sd_vae"] = self.vae
opts.data["uni_pc_order"] = self.uni_pc_order
modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights()
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")

View File

@ -11,7 +11,12 @@ fi
export install_dir="$HOME"
export COMMANDLINE_ARGS="--skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate"
export TORCH_COMMAND="pip install torch==2.1.0 torchvision==0.16.0"
export PYTORCH_ENABLE_MPS_FALLBACK=1
if [[ "$(sysctl -n machdep.cpu.brand_string)" =~ ^.*"Intel".*$ ]]; then
export TORCH_COMMAND="pip install torch==2.1.2 torchvision==0.16.2"
else
export TORCH_COMMAND="pip install torch==2.3.0 torchvision==0.18.0"
fi
####################################################################