diffusers/tests/test_modeling_utils.py

485 lines
16 KiB
Python
Raw Normal View History

2022-05-31 06:27:59 -06:00
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2022-06-07 10:20:14 -06:00
2022-06-17 08:36:51 -06:00
import inspect
2022-05-31 06:27:59 -06:00
import tempfile
import unittest
2022-06-20 05:06:31 -06:00
import numpy as np
2022-05-31 06:27:59 -06:00
import torch
2022-06-20 05:06:31 -06:00
import pytest
2022-06-15 04:35:47 -06:00
from diffusers import (
BDDM,
DDIM,
DDPM,
GLIDE,
PNDM,
DDIMScheduler,
DDPMScheduler,
2022-06-20 05:06:31 -06:00
GLIDESuperResUNetModel,
2022-06-15 04:35:47 -06:00
LatentDiffusion,
PNDMScheduler,
UNetModel,
)
2022-06-09 04:36:37 -06:00
from diffusers.configuration_utils import ConfigMixin
2022-06-09 06:06:58 -06:00
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.pipeline_bddm import DiffWave
2022-06-12 15:20:39 -06:00
from diffusers.testing_utils import floats_tensor, slow, torch_device
2022-05-31 06:27:59 -06:00
2022-06-12 11:59:39 -06:00
torch.backends.cuda.matmul.allow_tf32 = False
2022-05-31 06:27:59 -06:00
2022-06-09 04:36:37 -06:00
class ConfigTester(unittest.TestCase):
def test_load_not_from_mixin(self):
with self.assertRaises(ValueError):
ConfigMixin.from_config("dummy_path")
def test_save_load(self):
class SampleObject(ConfigMixin):
config_name = "config.json"
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
):
2022-06-17 02:58:43 -06:00
self.register_to_config(a=a, b=b, c=c, d=d, e=e)
2022-06-09 04:36:37 -06:00
obj = SampleObject()
config = obj.config
assert config["a"] == 2
assert config["b"] == 5
assert config["c"] == (2, 5)
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
with tempfile.TemporaryDirectory() as tmpdirname:
obj.save_config(tmpdirname)
new_obj = SampleObject.from_config(tmpdirname)
new_config = new_obj.config
2022-06-17 03:55:02 -06:00
# unfreeze configs
config = dict(config)
new_config = dict(new_config)
2022-06-09 04:36:37 -06:00
assert config.pop("c") == (2, 5) # instantiated as tuple
assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json
assert config == new_config
2022-06-17 05:49:26 -06:00
class ModelTesterMixin:
2022-05-31 06:27:59 -06:00
def test_from_pretrained_save_pretrained(self):
2022-06-17 05:49:26 -06:00
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
2022-06-12 13:56:13 -06:00
model.to(torch_device)
2022-06-17 05:49:26 -06:00
model.eval()
2022-05-31 06:27:59 -06:00
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
2022-06-17 11:04:07 -06:00
new_model = self.model_class.from_pretrained(tmpdirname)
2022-06-12 13:56:13 -06:00
new_model.to(torch_device)
2022-05-31 06:27:59 -06:00
2022-06-17 05:49:26 -06:00
with torch.no_grad():
image = model(**inputs_dict)
new_image = new_model(**inputs_dict)
2022-05-31 06:27:59 -06:00
2022-06-17 08:36:51 -06:00
max_diff = (image - new_image).abs().sum().item()
self.assertLessEqual(max_diff, 1e-5, "Models give different forward passes")
2022-06-20 05:06:31 -06:00
2022-06-17 05:36:59 -06:00
def test_determinism(self):
2022-06-17 08:36:51 -06:00
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**inputs_dict)
second = model(**inputs_dict)
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
2022-06-20 05:06:31 -06:00
2022-06-17 05:36:59 -06:00
def test_output(self):
2022-06-17 08:36:51 -06:00
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
self.assertIsNotNone(output)
expected_shape = inputs_dict["x"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
2022-06-20 05:06:31 -06:00
2022-06-17 05:36:59 -06:00
def test_forward_signature(self):
2022-06-17 08:36:51 -06:00
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["x", "timesteps"]
self.assertListEqual(arg_names[:2], expected_arg_names)
2022-06-20 05:06:31 -06:00
2022-06-17 05:36:59 -06:00
def test_model_from_config(self):
2022-06-17 08:36:51 -06:00
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
# test if the model can be loaded from the config
# and has all the expected shape
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_config(tmpdirname)
new_model = self.model_class.from_config(tmpdirname)
new_model.to(torch_device)
new_model.eval()
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
# check if all paramters shape are the same
for param_name in model.state_dict().keys():
param_1 = model.state_dict()[param_name]
param_2 = new_model.state_dict()[param_name]
self.assertEqual(param_1.shape, param_2.shape)
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
with torch.no_grad():
output_1 = model(**inputs_dict)
output_2 = new_model(**inputs_dict)
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
self.assertEqual(output_1.shape, output_2.shape)
2022-06-17 05:36:59 -06:00
def test_training(self):
2022-06-17 08:36:51 -06:00
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
2022-06-17 08:36:51 -06:00
model = self.model_class(**init_dict)
model.to(torch_device)
model.train()
output = model(**inputs_dict)
2022-06-20 05:06:31 -06:00
noise = torch.randn((inputs_dict["x"].shape[0],) + self.get_output_shape).to(torch_device)
2022-06-17 08:36:51 -06:00
loss = torch.nn.functional.mse_loss(output, noise)
loss.backward()
2022-06-17 05:49:26 -06:00
class UnetModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNetModel
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
2022-06-17 08:36:51 -06:00
return {"x": noise, "timesteps": time_step}
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
@property
def get_input_shape(self):
return (3, 32, 32)
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
@property
def get_output_shape(self):
return (3, 32, 32)
2022-06-17 05:49:26 -06:00
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"ch": 32,
"ch_mult": (1, 2),
"num_res_blocks": 2,
"attn_resolutions": (16,),
"resolution": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
2022-06-20 05:06:31 -06:00
2022-06-17 05:49:26 -06:00
def test_from_pretrained_hub(self):
2022-06-17 08:36:51 -06:00
model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
2022-06-17 05:49:26 -06:00
2022-06-17 08:36:51 -06:00
model.to(torch_device)
2022-06-17 05:49:26 -06:00
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
def test_output_pretrained(self):
model = UNetModel.from_pretrained("fusing/ddpm_dummy")
model.eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
time_step = torch.tensor([10])
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
with torch.no_grad():
output = model(noise, time_step)
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
expected_output_slice = torch.tensor([ 0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
# fmt: on
print(output_slice)
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
class GLIDESuperResUNetTests(ModelTesterMixin, unittest.TestCase):
model_class = GLIDESuperResUNetModel
@property
def dummy_input(self):
batch_size = 4
num_channels = 6
sizes = (32, 32)
low_res_size = (4, 4)
torch_device = "cpu"
noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
time_step = torch.tensor([10] * noise.shape[0], device=torch_device)
return {"x": noise, "timesteps": time_step, "low_res": low_res}
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
@property
def get_input_shape(self):
return (3, 32, 32)
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
@property
def get_output_shape(self):
return (6, 32, 32)
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"attention_resolutions": (2,),
2022-06-20 05:06:31 -06:00
"channel_mult": (1, 2),
2022-06-17 11:04:07 -06:00
"in_channels": 6,
"out_channels": 6,
"model_channels": 32,
"num_head_channels": 8,
"num_heads_upsample": 1,
"num_res_blocks": 2,
"resblock_updown": True,
"resolution": 32,
2022-06-20 05:06:31 -06:00
"use_scale_shift_norm": True,
2022-06-17 11:04:07 -06:00
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
output, _ = torch.split(output, 3, dim=1)
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
self.assertIsNotNone(output)
expected_shape = inputs_dict["x"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
def test_from_pretrained_hub(self):
2022-06-20 05:06:31 -06:00
model, loading_info = GLIDESuperResUNetModel.from_pretrained(
"fusing/glide-super-res-dummy", output_loading_info=True
)
2022-06-17 11:04:07 -06:00
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
def test_output_pretrained(self):
model = GLIDESuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
2022-06-20 05:06:31 -06:00
noise = torch.randn(1, 3, 64, 64)
2022-06-17 11:04:07 -06:00
low_res = torch.randn(1, 3, 4, 4)
time_step = torch.tensor([42] * noise.shape[0])
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
with torch.no_grad():
output = model(noise, time_step, low_res)
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
output, _ = torch.split(output, 3, dim=1)
output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
2022-06-17 11:04:07 -06:00
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
2022-06-17 05:49:26 -06:00
class PipelineTesterMixin(unittest.TestCase):
def test_from_pretrained_save_pretrained(self):
# 1. Load models
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
2022-06-13 02:39:53 -06:00
schedular = DDPMScheduler(timesteps=10)
ddpm = DDPM(model, schedular)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPM.from_pretrained(tmpdirname)
2022-06-07 10:20:14 -06:00
generator = torch.manual_seed(0)
2022-06-07 07:43:08 -06:00
image = ddpm(generator=generator)
2022-06-07 10:20:14 -06:00
generator = generator.manual_seed(0)
2022-06-07 07:43:08 -06:00
new_image = new_ddpm(generator=generator)
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
@slow
def test_from_pretrained_hub(self):
model_path = "fusing/ddpm-cifar10"
ddpm = DDPM.from_pretrained(model_path)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)
ddpm.noise_scheduler.num_timesteps = 10
ddpm_from_hub.noise_scheduler.num_timesteps = 10
2022-06-07 10:20:14 -06:00
generator = torch.manual_seed(0)
2022-06-07 07:43:08 -06:00
image = ddpm(generator=generator)
2022-06-07 10:20:14 -06:00
generator = generator.manual_seed(0)
2022-06-07 07:43:08 -06:00
new_image = ddpm_from_hub(generator=generator)
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
2022-06-08 03:42:31 -06:00
@slow
def test_ddpm_cifar10(self):
generator = torch.manual_seed(0)
model_id = "fusing/ddpm-cifar10"
2022-06-10 05:12:23 -06:00
unet = UNetModel.from_pretrained(model_id)
2022-06-13 02:39:53 -06:00
noise_scheduler = DDPMScheduler.from_config(model_id)
2022-06-12 15:20:39 -06:00
noise_scheduler = noise_scheduler.set_format("pt")
2022-06-10 05:12:23 -06:00
ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
2022-06-08 03:42:31 -06:00
image = ddpm(generator=generator)
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 32, 32)
expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
@slow
def test_ddim_cifar10(self):
generator = torch.manual_seed(0)
model_id = "fusing/ddpm-cifar10"
2022-06-10 05:12:23 -06:00
unet = UNetModel.from_pretrained(model_id)
2022-06-12 15:20:39 -06:00
noise_scheduler = DDIMScheduler(tensor_format="pt")
2022-06-10 05:12:23 -06:00
ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
2022-06-08 03:42:31 -06:00
image = ddim(generator=generator, eta=0.0)
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 32, 32)
2022-06-09 06:06:58 -06:00
expected_slice = torch.tensor(
[-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
)
2022-06-08 03:42:31 -06:00
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
2022-06-10 10:37:45 -06:00
2022-06-13 10:29:22 -06:00
@slow
def test_pndm_cifar10(self):
generator = torch.manual_seed(0)
model_id = "fusing/ddpm-cifar10"
unet = UNetModel.from_pretrained(model_id)
noise_scheduler = PNDMScheduler(tensor_format="pt")
pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler)
image = pndm(generator=generator)
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 32, 32)
expected_slice = torch.tensor(
[-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471]
)
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
2022-06-10 10:37:45 -06:00
@slow
def test_ldm_text2img(self):
model_id = "fusing/latent-diffusion-text2im-large"
ldm = LatentDiffusion.from_pretrained(model_id)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image = ldm([prompt], generator=generator, num_inference_steps=20)
image_slice = image[0, -1, -3:, -3:].cpu()
print(image_slice.shape)
assert image.shape == (1, 3, 256, 256)
expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
2022-06-12 11:12:01 -06:00
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
2022-06-15 03:21:02 -06:00
@slow
def test_glide_text2img(self):
model_id = "fusing/glide-base"
glide = GLIDE.from_pretrained(model_id)
prompt = "a pencil sketch of a corgi"
generator = torch.manual_seed(0)
image = glide(prompt, generator=generator, num_inference_steps_upscale=20)
image_slice = image[0, :3, :3, -1].cpu()
assert image.shape == (1, 256, 256, 3)
expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
def test_module_from_pipeline(self):
model = DiffWave(num_res_layers=4)
noise_scheduler = DDPMScheduler(timesteps=12)
bddm = BDDM(model, noise_scheduler)
# check if the library name for the diffwave moduel is set to pipeline module
self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")
# check if we can save and load the pipeline
with tempfile.TemporaryDirectory() as tmpdirname:
bddm.save_pretrained(tmpdirname)
_ = BDDM.from_pretrained(tmpdirname)
# check if the same works using the DifusionPipeline class
_ = DiffusionPipeline.from_pretrained(tmpdirname)