2022-11-23 11:03:45 -07:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 HuggingFace Inc.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import gc
|
|
|
|
import tempfile
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from diffusers import VersatileDiffusionPipeline
|
|
|
|
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
|
|
|
|
|
|
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
|
|
|
2022-12-06 10:35:30 -07:00
|
|
|
class VersatileDiffusionMegaPipelineFastTests(unittest.TestCase):
|
2022-11-23 11:03:45 -07:00
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
@slow
|
|
|
|
@require_torch_gpu
|
|
|
|
class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
|
|
|
|
def tearDown(self):
|
|
|
|
# clean up the VRAM after each test
|
|
|
|
super().tearDown()
|
|
|
|
gc.collect()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
2022-11-30 03:31:50 -07:00
|
|
|
def test_from_save_pretrained(self):
|
2022-11-23 11:03:45 -07:00
|
|
|
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt_image = load_image(
|
|
|
|
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
|
|
|
|
)
|
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
image = pipe.dual_guided(
|
|
|
|
prompt="first prompt",
|
|
|
|
image=prompt_image,
|
|
|
|
text_to_image_strength=0.75,
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=7.5,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="numpy",
|
|
|
|
).images
|
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
|
|
pipe.save_pretrained(tmpdirname)
|
|
|
|
pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
generator = generator.manual_seed(0)
|
|
|
|
new_image = pipe.dual_guided(
|
|
|
|
prompt="first prompt",
|
|
|
|
image=prompt_image,
|
|
|
|
text_to_image_strength=0.75,
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=7.5,
|
|
|
|
num_inference_steps=2,
|
|
|
|
output_type="numpy",
|
|
|
|
).images
|
|
|
|
|
|
|
|
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
|
|
|
|
|
|
|
|
def test_inference_dual_guided_then_text_to_image(self):
|
|
|
|
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
|
|
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
|
|
|
|
prompt = "cyberpunk 2077"
|
|
|
|
init_image = load_image(
|
|
|
|
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
|
|
|
|
)
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
image = pipe.dual_guided(
|
|
|
|
prompt=prompt,
|
|
|
|
image=init_image,
|
|
|
|
text_to_image_strength=0.75,
|
|
|
|
generator=generator,
|
|
|
|
guidance_scale=7.5,
|
|
|
|
num_inference_steps=50,
|
|
|
|
output_type="numpy",
|
|
|
|
).images
|
|
|
|
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
2022-11-25 05:40:41 -07:00
|
|
|
expected_slice = np.array([0.0081, 0.0032, 0.0002, 0.0056, 0.0027, 0.0000, 0.0051, 0.0020, 0.0007])
|
2022-11-29 03:48:57 -07:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
|
2022-11-23 11:03:45 -07:00
|
|
|
|
|
|
|
prompt = "A painting of a squirrel eating a burger "
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
image = pipe.text_to_image(
|
|
|
|
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
|
|
|
|
).images
|
|
|
|
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
expected_slice = np.array([0.0408, 0.0181, 0.0, 0.0388, 0.0046, 0.0461, 0.0411, 0.0, 0.0222])
|
2022-11-29 03:48:57 -07:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
|
2022-11-23 11:03:45 -07:00
|
|
|
|
2022-11-25 05:40:41 -07:00
|
|
|
image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images
|
2022-11-23 11:03:45 -07:00
|
|
|
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1]
|
|
|
|
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
2022-11-25 08:15:05 -07:00
|
|
|
expected_slice = np.array([0.3403, 0.1809, 0.0938, 0.3855, 0.2393, 0.1243, 0.4028, 0.3110, 0.1799])
|
2022-11-29 03:48:57 -07:00
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
|