hf_text-generation-inference/Dockerfile

303 lines
10 KiB
Docker
Raw Permalink Normal View History

# Rust builder
Lots of improvements (Still 2 allocators) (#2449) * Making prefix/flashinfer the default and testing the full release tests. * Include flashinfer in the docker. * Using prebuilt. * Allowing window_left_size (dummy version). * Disabling flashinfer/prefix caching on odd head_dim * Disable prefix caching for lora. * More specific codes. * Update lock * Updating integration tests with new values with FI/FD. Remove paged as a default too, and using FD everywhere. * Update cargo lock ? * Upgrade to 1.80 because of bitstream... * Everywhere 1.80 * Forgot last default place. * Apply suggestions from code review Co-authored-by: drbh <david.richard.holtz@gmail.com> * Updated flake lock * Tmp * Upgrade resolution system for less errors in resolution. * Remove lambda for cleaner function. * Handling debugger. * OVerride the env in server tests. * Is this enough to make it work ? * This seems to be working. * Downgrade some logs. * Fixing the default for vlm. * Don't enable prefix caching on VLM just yet. * Change `add_special_tokens` in order to have the correct tokens for chat input and not (since it's super important with the prefixing now) * Fixing prefix caching for flashdecoding. * Update all models. * Fixed flashinfer version. * add_special_tokens is internal only * Fixing seqlen with the new vlms. * Fixing the issue with `add_special_tokens` not being passed around. * Fixing the test. * Removing encoder_decoder (seq2seq). * Update the chat test. * Fixing the batching tokenization in flash causal lm. * Truncating left for radix purposes. * Oops this doesn't belong here. * Put back default pure shell. * Update server tests - Default to throughput test in k6 - Use TGI_WIGGLE_ROOM to adjust wiggle room * Only n_heads / process_group.size() are necessary. * Revert the integrationt tests change (seem linked to head_size modification). * Adding error message when assert is violated. * Fixing the free algorithm to handle times where the common prefix is smaller. * Apply suggestions from code review Co-authored-by: OlivierDehaene <olivier@huggingface.co> * Update server/text_generation_server/layers/attention/common.py Co-authored-by: OlivierDehaene <olivier@huggingface.co> * Fix disabling prefix caching - Fix windowing checks. * Revert the Cohere tokenizer change (for now using a revision instead). * Fmt. --------- Co-authored-by: drbh <david.richard.holtz@gmail.com> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2024-08-29 08:29:01 -06:00
FROM lukemathwalker/cargo-chef:latest-rust-1.80 AS chef
2023-03-03 07:07:27 -07:00
WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
FROM chef AS planner
COPY Cargo.lock Cargo.lock
2023-03-03 07:07:27 -07:00
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto
2023-05-09 06:39:59 -06:00
COPY benchmark benchmark
2023-03-03 07:07:27 -07:00
COPY router router
Rebase TRT-llm (#2331) * wip wip refacto refacto Initial setup for CXX binding to TRTLLM Working FFI call for TGI and TRTLLM backend Remove unused parameters annd force tokenizer name to be set Overall build TRTLLM and deps through CMake build system Enable end to end CMake build First version loading engines and making it ready for inference Remembering to check how we can detect support for chunked context Move to latest TensorRT-LLM version Specify which default log level to use depending on CMake build type make leader executor mode working unconditionally call InitializeBackend on the FFI layer bind to CUDA::nvml to retrieve compute capabilities at runtime updated logic and comment to detect cuda compute capabilities implement the Stream method to send new tokens through a callback use spdlog release 1.14.1 moving forward update trtllm to latest version a96cccafcf6365c128f004f779160951f8c0801c correctly tell cmake to build dependent tensorrt-llm required libraries create cmake install target to put everything relevant in installation folder add auth_token CLI argument to provide hf hub authentification token allow converting huggingface::tokenizers error to TensorRtLlmBackendError use correct include for spdlog include guard to build example in cmakelists working setup of the ffi layer remove fmt import use external fmt lib end to end ffi flow working make sure to track include/ffi.h to trigger rebuild from cargo impl the rust backend which currently cannot move the actual computation in background thread expose shutdown function at ffi layer impl RwLock scenario for TensorRtLllmBackend oops missing c++ backend definitions compute the number of maximum new tokens for each request independently make sure the context is not dropped in the middle of the async decoding. remove unnecessary log add all the necessary plumbery to return the generated content update invalid doc in cpp file correctly forward back the log probabilities remove unneeded scope variable for now refactor Stream impl for Generation to factorise code expose the internal missing start/queue timestamp forward tgi parameters rep/freq penalty add some more validation about grammar not supported define a shared struct to hold the result of a decoding step expose information about potential error happening while decoding remove logging add logging in case of decoding error make sure executor_worker is provided add initial Dockerfile for TRTLLM backend add some more information in CMakeLists.txt to correctly install executorWorker add some more information in CMakeLists.txt to correctly find and install nvrtc wrapper simplify prebuilt trtllm libraries name definition do the same name definition stuff for tensorrt_llm_executor_static leverage pkg-config to probe libraries paths and reuse new install structure from cmake fix bad copy/past missing nvinfer linkage direction align all the linker search dependency add missing pkgconfig folder for MPI in Dockerfile correctly setup linking search path for runtime layer fix missing / before tgi lib path adding missing ld_library_path for cuda stubs in Dockerfile update tgi entrypoint commenting out Python part for TensorRT installation refactored docker image move to TensorRT-LLM v0.11.0 make docker linter happy with same capitalization rule fix typo refactor the compute capabilities detection along with num gpus update TensorRT-LLM to latest version update TensorRT install script to latest update build.rs to link to cuda 12.5 add missing dependant libraries for linking clean up a bit install to decoder_attention target add some custom stuff for nccl linkage fix envvar CARGO_CFG_TARGET_ARCH set at runtime vs compile time use std::env::const::ARCH make sure variable live long enough... look for cuda 12.5 add some more basic info in README.md * Rebase. * Fix autodocs. * Let's try to enable trtllm backend. * Ignore backends/v3 by default. * Fixing client. * Fix makefile + autodocs. * Updating the schema thing + redocly. * Fix trtllm lint. * Adding pb files ? * Remove cargo fmt temporarily. * ? * Tmp. * Remove both check + clippy ? * Backporting telemetry. * Backporting 457fb0a1 * Remove PB from git. * Fixing PB with default member backends/client * update TensorRT-LLM to latest version * provided None for api_key * link against libtensorrt_llm and not libtensorrt-llm --------- Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com> Co-authored-by: Morgan Funtowicz <morgan@huggingface.co>
2024-07-31 02:33:10 -06:00
COPY backends backends
2023-03-03 07:07:27 -07:00
COPY launcher launcher
2023-03-03 07:07:27 -07:00
RUN cargo chef prepare --recipe-path recipe.json
FROM chef AS builder
2023-02-13 05:02:45 -07:00
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
python3.11-dev
2023-02-13 05:02:45 -07:00
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
unzip -o $PROTOC_ZIP -d /usr/local 'include/*' && \
rm -f $PROTOC_ZIP
2022-10-14 07:56:21 -06:00
2023-03-03 07:07:27 -07:00
COPY --from=planner /usr/src/recipe.json recipe.json
RUN cargo chef cook --profile release-opt --recipe-path recipe.json
2022-10-14 07:56:21 -06:00
Internal runner ? (#2023) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-06-06 10:51:42 -06:00
ARG GIT_SHA
ARG DOCKER_LABEL
2023-03-03 07:07:27 -07:00
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
2022-10-14 07:56:21 -06:00
COPY proto proto
2023-05-09 06:39:59 -06:00
COPY benchmark benchmark
2022-10-14 07:56:21 -06:00
COPY router router
Rebase TRT-llm (#2331) * wip wip refacto refacto Initial setup for CXX binding to TRTLLM Working FFI call for TGI and TRTLLM backend Remove unused parameters annd force tokenizer name to be set Overall build TRTLLM and deps through CMake build system Enable end to end CMake build First version loading engines and making it ready for inference Remembering to check how we can detect support for chunked context Move to latest TensorRT-LLM version Specify which default log level to use depending on CMake build type make leader executor mode working unconditionally call InitializeBackend on the FFI layer bind to CUDA::nvml to retrieve compute capabilities at runtime updated logic and comment to detect cuda compute capabilities implement the Stream method to send new tokens through a callback use spdlog release 1.14.1 moving forward update trtllm to latest version a96cccafcf6365c128f004f779160951f8c0801c correctly tell cmake to build dependent tensorrt-llm required libraries create cmake install target to put everything relevant in installation folder add auth_token CLI argument to provide hf hub authentification token allow converting huggingface::tokenizers error to TensorRtLlmBackendError use correct include for spdlog include guard to build example in cmakelists working setup of the ffi layer remove fmt import use external fmt lib end to end ffi flow working make sure to track include/ffi.h to trigger rebuild from cargo impl the rust backend which currently cannot move the actual computation in background thread expose shutdown function at ffi layer impl RwLock scenario for TensorRtLllmBackend oops missing c++ backend definitions compute the number of maximum new tokens for each request independently make sure the context is not dropped in the middle of the async decoding. remove unnecessary log add all the necessary plumbery to return the generated content update invalid doc in cpp file correctly forward back the log probabilities remove unneeded scope variable for now refactor Stream impl for Generation to factorise code expose the internal missing start/queue timestamp forward tgi parameters rep/freq penalty add some more validation about grammar not supported define a shared struct to hold the result of a decoding step expose information about potential error happening while decoding remove logging add logging in case of decoding error make sure executor_worker is provided add initial Dockerfile for TRTLLM backend add some more information in CMakeLists.txt to correctly install executorWorker add some more information in CMakeLists.txt to correctly find and install nvrtc wrapper simplify prebuilt trtllm libraries name definition do the same name definition stuff for tensorrt_llm_executor_static leverage pkg-config to probe libraries paths and reuse new install structure from cmake fix bad copy/past missing nvinfer linkage direction align all the linker search dependency add missing pkgconfig folder for MPI in Dockerfile correctly setup linking search path for runtime layer fix missing / before tgi lib path adding missing ld_library_path for cuda stubs in Dockerfile update tgi entrypoint commenting out Python part for TensorRT installation refactored docker image move to TensorRT-LLM v0.11.0 make docker linter happy with same capitalization rule fix typo refactor the compute capabilities detection along with num gpus update TensorRT-LLM to latest version update TensorRT install script to latest update build.rs to link to cuda 12.5 add missing dependant libraries for linking clean up a bit install to decoder_attention target add some custom stuff for nccl linkage fix envvar CARGO_CFG_TARGET_ARCH set at runtime vs compile time use std::env::const::ARCH make sure variable live long enough... look for cuda 12.5 add some more basic info in README.md * Rebase. * Fix autodocs. * Let's try to enable trtllm backend. * Ignore backends/v3 by default. * Fixing client. * Fix makefile + autodocs. * Updating the schema thing + redocly. * Fix trtllm lint. * Adding pb files ? * Remove cargo fmt temporarily. * ? * Tmp. * Remove both check + clippy ? * Backporting telemetry. * Backporting 457fb0a1 * Remove PB from git. * Fixing PB with default member backends/client * update TensorRT-LLM to latest version * provided None for api_key * link against libtensorrt_llm and not libtensorrt-llm --------- Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com> Co-authored-by: Morgan Funtowicz <morgan@huggingface.co>
2024-07-31 02:33:10 -06:00
COPY backends backends
2022-10-18 07:19:03 -06:00
COPY launcher launcher
RUN cargo build --profile release-opt
RUN cargo build --profile release-opt
2022-10-18 07:19:03 -06:00
# Python builder
# Adapted from: https://github.com/pytorch/pytorch/blob/master/Dockerfile
FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS pytorch-install
# NOTE: When updating PyTorch version, beware to remove `pip install nvidia-nccl-cu12==2.22.3` below in the Dockerfile. Context: https://github.com/huggingface/text-generation-inference/pull/2099
ARG PYTORCH_VERSION=2.4.0
ARG PYTHON_VERSION=3.11
This should prevent the PyTorch overriding. (#767) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-08-03 13:54:39 -06:00
# Keep in sync with `server/pyproject.toml
ARG CUDA_VERSION=12.4
Pali gemma modeling (#1895) This PR adds paligemma modeling code Blog post: https://huggingface.co/blog/paligemma Transformers PR: https://github.com/huggingface/transformers/pull/30814 install the latest changes and run with ```bash # get the weights # text-generation-server download-weights gv-hf/PaliGemma-base-224px-hf # run TGI text-generation-launcher --model-id gv-hf/PaliGemma-base-224px-hf ``` basic example sending various requests ```python from huggingface_hub import InferenceClient client = InferenceClient("http://127.0.0.1:3000") images = [ "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png", ] prompts = [ "What animal is in this image?", "Name three colors in this image.", "What are 10 colors in this image?", "Where is the cow standing?", "answer en Where is the cow standing?", "Is there a bird in the image?", "Is ther a cow in the image?", "Is there a rabbit in the image?", "how many birds are in the image?", "how many rabbits are in the image?", ] for img in images: print(f"\nImage: {img.split('/')[-1]}") for prompt in prompts: inputs = f"![]({img}){prompt}\n" json_data = { "inputs": inputs, "parameters": { "max_new_tokens": 30, "do_sample": False, }, } generated_output = client.text_generation(prompt, max_new_tokens=30, stream=False) print([f"{prompt}\n{generated_output}"]) ``` --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-05-15 22:58:47 -06:00
ARG MAMBA_VERSION=24.3.0-0
ARG CUDA_CHANNEL=nvidia
ARG INSTALL_CHANNEL=pytorch
# Automatically set by buildx
ARG TARGETPLATFORM
ENV PATH /opt/conda/bin:$PATH
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \
ca-certificates \
ccache \
curl \
git && \
rm -rf /var/lib/apt/lists/*
# Install conda
# translating Docker's TARGETPLATFORM into mamba arches
RUN case ${TARGETPLATFORM} in \
"linux/arm64") MAMBA_ARCH=aarch64 ;; \
*) MAMBA_ARCH=x86_64 ;; \
esac && \
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
RUN chmod +x ~/mambaforge.sh && \
bash ~/mambaforge.sh -b -p /opt/conda && \
rm ~/mambaforge.sh
# Install pytorch
# On arm64 we exit with an error code
RUN case ${TARGETPLATFORM} in \
"linux/arm64") exit 1 ;; \
*) /opt/conda/bin/conda update -y conda && \
/opt/conda/bin/conda install -c "${INSTALL_CHANNEL}" -c "${CUDA_CHANNEL}" -y "python=${PYTHON_VERSION}" "pytorch=$PYTORCH_VERSION" "pytorch-cuda=$(echo $CUDA_VERSION | cut -d'.' -f 1-2)" ;; \
esac && \
/opt/conda/bin/conda clean -ya
# CUDA kernels builder image
FROM pytorch-install AS kernel-builder
ARG MAX_JOBS=8
ENV TORCH_CUDA_ARCH_LIST="8.0;8.6;9.0+PTX"
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
ninja-build cmake \
&& rm -rf /var/lib/apt/lists/*
# Build Flash Attention CUDA kernels
FROM kernel-builder AS flash-att-builder
WORKDIR /usr/src
COPY server/Makefile-flash-att Makefile
# Build specific version of flash attention
RUN make build-flash-attention
# Build Flash Attention v2 CUDA kernels
FROM kernel-builder AS flash-att-v2-builder
WORKDIR /usr/src
COPY server/Makefile-flash-att-v2 Makefile
# Build specific version of flash attention v2
RUN make build-flash-attention-v2-cuda
feat(server): Add exllama GPTQ CUDA kernel support #553 (#666) Just trying to get the integration tests to pass. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Felix Marty <9808326+fxmarty@users.noreply.github.com>
2023-07-21 02:59:00 -06:00
# Build Transformers exllama kernels
FROM kernel-builder AS exllama-kernels-builder
feat(server): Add exllama GPTQ CUDA kernel support #553 (#666) Just trying to get the integration tests to pass. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Felix Marty <9808326+fxmarty@users.noreply.github.com>
2023-07-21 02:59:00 -06:00
WORKDIR /usr/src
COPY server/exllama_kernels/ .
Exllama v2 (#1211) # What does this PR do? See #1165 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Florian Zimmermeister <flozi00.fz@gmail.com> Co-authored-by: Ubuntu <ubuntu@ip-172-31-24-153.ec2.internal>
2023-11-25 14:38:38 -07:00
RUN python setup.py build
Exllama v2 (#1211) # What does this PR do? See #1165 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Florian Zimmermeister <flozi00.fz@gmail.com> Co-authored-by: Ubuntu <ubuntu@ip-172-31-24-153.ec2.internal>
2023-11-25 14:38:38 -07:00
# Build Transformers exllama kernels
FROM kernel-builder AS exllamav2-kernels-builder
Exllama v2 (#1211) # What does this PR do? See #1165 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Florian Zimmermeister <flozi00.fz@gmail.com> Co-authored-by: Ubuntu <ubuntu@ip-172-31-24-153.ec2.internal>
2023-11-25 14:38:38 -07:00
WORKDIR /usr/src
COPY server/Makefile-exllamav2/ Makefile
Exllama v2 (#1211) # What does this PR do? See #1165 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Florian Zimmermeister <flozi00.fz@gmail.com> Co-authored-by: Ubuntu <ubuntu@ip-172-31-24-153.ec2.internal>
2023-11-25 14:38:38 -07:00
feat(server): Add exllama GPTQ CUDA kernel support #553 (#666) Just trying to get the integration tests to pass. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Felix Marty <9808326+fxmarty@users.noreply.github.com>
2023-07-21 02:59:00 -06:00
# Build specific version of transformers
RUN make build-exllamav2
feat(server): Add exllama GPTQ CUDA kernel support #553 (#666) Just trying to get the integration tests to pass. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Felix Marty <9808326+fxmarty@users.noreply.github.com>
2023-07-21 02:59:00 -06:00
Add AWQ quantization inference support (#1019) (#1054) # Add AWQ quantization inference support Fixes https://github.com/huggingface/text-generation-inference/issues/781 This PR (partially) adds support for AWQ quantization for inference. More information on AWQ [here](https://arxiv.org/abs/2306.00978). In general, AWQ is faster and more accurate than GPTQ, which is currently supported by TGI. This PR installs 4-bit GEMM custom CUDA kernels released by AWQ authors (in `requirements.txt`, just one line change). Quick way to test this PR would be bring up TGI as follows: ``` text-generation-server download-weights abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq text-generation-launcher \ --huggingface-hub-cache ~/.cache/huggingface/hub/ \ --model-id abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq \ --trust-remote-code --port 8080 \ --max-input-length 2048 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 \ --quantize awq ``` Please note: * This PR was tested with FlashAttention v2 and vLLM. * This PR adds support for AWQ inference, not quantizing the models. That needs to be done outside of TGI, instructions [here](https://github.com/mit-han-lab/llm-awq/tree/f084f40bd996f3cf3a0633c1ad7d9d476c318aaa). * This PR only adds support for `FlashLlama` models for now. * Multi-GPU setup has not been tested. * No integration tests have been added so far, will add later if maintainers are interested in this change. * This PR can be tested on any of the models released [here](https://huggingface.co/abhinavkulkarni?sort_models=downloads#models). Please refer to the linked issue for benchmarks for [abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq](https://huggingface.co/abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq) vs [TheBloke/Llama-2-7b-Chat-GPTQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ). Please note, AWQ has released faster (and in case of Llama, fused) kernels for 4-bit GEMM, currently at the top of the `main` branch at https://github.com/mit-han-lab/llm-awq, but this PR uses an older commit that has been tested to work. We can switch to latest commit later on. ## Who can review? @OlivierDehaene OR @Narsil --------- # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Abhinav M Kulkarni <abhinavkulkarni@gmail.com> Co-authored-by: Abhinav Kulkarni <abhinav@concentric.ai>
2023-09-25 07:31:27 -06:00
# Build Transformers awq kernels
FROM kernel-builder AS awq-kernels-builder
Add AWQ quantization inference support (#1019) (#1054) # Add AWQ quantization inference support Fixes https://github.com/huggingface/text-generation-inference/issues/781 This PR (partially) adds support for AWQ quantization for inference. More information on AWQ [here](https://arxiv.org/abs/2306.00978). In general, AWQ is faster and more accurate than GPTQ, which is currently supported by TGI. This PR installs 4-bit GEMM custom CUDA kernels released by AWQ authors (in `requirements.txt`, just one line change). Quick way to test this PR would be bring up TGI as follows: ``` text-generation-server download-weights abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq text-generation-launcher \ --huggingface-hub-cache ~/.cache/huggingface/hub/ \ --model-id abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq \ --trust-remote-code --port 8080 \ --max-input-length 2048 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 \ --quantize awq ``` Please note: * This PR was tested with FlashAttention v2 and vLLM. * This PR adds support for AWQ inference, not quantizing the models. That needs to be done outside of TGI, instructions [here](https://github.com/mit-han-lab/llm-awq/tree/f084f40bd996f3cf3a0633c1ad7d9d476c318aaa). * This PR only adds support for `FlashLlama` models for now. * Multi-GPU setup has not been tested. * No integration tests have been added so far, will add later if maintainers are interested in this change. * This PR can be tested on any of the models released [here](https://huggingface.co/abhinavkulkarni?sort_models=downloads#models). Please refer to the linked issue for benchmarks for [abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq](https://huggingface.co/abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq) vs [TheBloke/Llama-2-7b-Chat-GPTQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ). Please note, AWQ has released faster (and in case of Llama, fused) kernels for 4-bit GEMM, currently at the top of the `main` branch at https://github.com/mit-han-lab/llm-awq, but this PR uses an older commit that has been tested to work. We can switch to latest commit later on. ## Who can review? @OlivierDehaene OR @Narsil --------- # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Abhinav M Kulkarni <abhinavkulkarni@gmail.com> Co-authored-by: Abhinav Kulkarni <abhinav@concentric.ai>
2023-09-25 07:31:27 -06:00
WORKDIR /usr/src
COPY server/Makefile-awq Makefile
# Build specific version of transformers
RUN make build-awq
Add AWQ quantization inference support (#1019) (#1054) # Add AWQ quantization inference support Fixes https://github.com/huggingface/text-generation-inference/issues/781 This PR (partially) adds support for AWQ quantization for inference. More information on AWQ [here](https://arxiv.org/abs/2306.00978). In general, AWQ is faster and more accurate than GPTQ, which is currently supported by TGI. This PR installs 4-bit GEMM custom CUDA kernels released by AWQ authors (in `requirements.txt`, just one line change). Quick way to test this PR would be bring up TGI as follows: ``` text-generation-server download-weights abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq text-generation-launcher \ --huggingface-hub-cache ~/.cache/huggingface/hub/ \ --model-id abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq \ --trust-remote-code --port 8080 \ --max-input-length 2048 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 \ --quantize awq ``` Please note: * This PR was tested with FlashAttention v2 and vLLM. * This PR adds support for AWQ inference, not quantizing the models. That needs to be done outside of TGI, instructions [here](https://github.com/mit-han-lab/llm-awq/tree/f084f40bd996f3cf3a0633c1ad7d9d476c318aaa). * This PR only adds support for `FlashLlama` models for now. * Multi-GPU setup has not been tested. * No integration tests have been added so far, will add later if maintainers are interested in this change. * This PR can be tested on any of the models released [here](https://huggingface.co/abhinavkulkarni?sort_models=downloads#models). Please refer to the linked issue for benchmarks for [abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq](https://huggingface.co/abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq) vs [TheBloke/Llama-2-7b-Chat-GPTQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ). Please note, AWQ has released faster (and in case of Llama, fused) kernels for 4-bit GEMM, currently at the top of the `main` branch at https://github.com/mit-han-lab/llm-awq, but this PR uses an older commit that has been tested to work. We can switch to latest commit later on. ## Who can review? @OlivierDehaene OR @Narsil --------- # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Abhinav M Kulkarni <abhinavkulkarni@gmail.com> Co-authored-by: Abhinav Kulkarni <abhinav@concentric.ai>
2023-09-25 07:31:27 -06:00
Fixing eetq dockerfile. (#1081) # What does this PR do? Fixes #1079 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-09-29 03:19:06 -06:00
# Build eetq kernels
FROM kernel-builder AS eetq-kernels-builder
Fixing eetq dockerfile. (#1081) # What does this PR do? Fixes #1079 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-09-29 03:19:06 -06:00
WORKDIR /usr/src
COPY server/Makefile-eetq Makefile
# Build specific version of transformers
RUN make build-eetq
Fixing eetq dockerfile. (#1081) # What does this PR do? Fixes #1079 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-09-29 03:19:06 -06:00
Enable multiple LoRa adapters (#2010) * feat: first draft load multiple lora * feat: load weights within layer and refactor lora pass * fix: refactor and reduce lora math * feat: baseline impl single request multi lora support * feat: prefer lorax implementation and port loading logic * fix: prefer adapter_data and refactors * feat: perfer loraxs custom punica kernels and add mlp loras * fix: adjust batch for bgmv * fix: adjust adapter_segments logic when in batch * fix: refactor and move changes to v3 proto * fix: pass model_id for all flash causal lms * fix: pass model_id for all causal and seq2seq lms * fix: add model_id to model test * feat: add lora support to mistral and refactors * feat: prefer model id in request * fix: include rust code for adapter id * feat: bump launcher and add new lora docs * feat: support base model generation and refactors * fix: rename doc to retry ci build * feat: support if vlm models * fix: add adapter_data param and avoid missing layers * fix: add adapter_data param to phi and neox * fix: update all models forwards to include adapter_data * fix: add model_id to IdeficsCausalLM * Update lora.md Fixed a typo * Update lora.md Fixing spam image * fix: add lora kernel to dockerfile, support running without kernels and refactors * fix: avoid dockerfile conflict * fix: refactors and adjust flash llama lora logic * fix: skip llama test due to CI issue (temp) * fix: skip llama test CI (temp) 2 * fix: revert skips and prefer updated ci token for tests * fix: refactors and helpful comments * fix: add noop in TensorParallelAdapterRowLinear too * fix: refactor and move shard_lora_weights logic * fix: exit early if no adapter_data --------- Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 12:46:27 -06:00
# Build Lorax Punica kernels
FROM kernel-builder AS lorax-punica-builder
Enable multiple LoRa adapters (#2010) * feat: first draft load multiple lora * feat: load weights within layer and refactor lora pass * fix: refactor and reduce lora math * feat: baseline impl single request multi lora support * feat: prefer lorax implementation and port loading logic * fix: prefer adapter_data and refactors * feat: perfer loraxs custom punica kernels and add mlp loras * fix: adjust batch for bgmv * fix: adjust adapter_segments logic when in batch * fix: refactor and move changes to v3 proto * fix: pass model_id for all flash causal lms * fix: pass model_id for all causal and seq2seq lms * fix: add model_id to model test * feat: add lora support to mistral and refactors * feat: prefer model id in request * fix: include rust code for adapter id * feat: bump launcher and add new lora docs * feat: support base model generation and refactors * fix: rename doc to retry ci build * feat: support if vlm models * fix: add adapter_data param and avoid missing layers * fix: add adapter_data param to phi and neox * fix: update all models forwards to include adapter_data * fix: add model_id to IdeficsCausalLM * Update lora.md Fixed a typo * Update lora.md Fixing spam image * fix: add lora kernel to dockerfile, support running without kernels and refactors * fix: avoid dockerfile conflict * fix: refactors and adjust flash llama lora logic * fix: skip llama test due to CI issue (temp) * fix: skip llama test CI (temp) 2 * fix: revert skips and prefer updated ci token for tests * fix: refactors and helpful comments * fix: add noop in TensorParallelAdapterRowLinear too * fix: refactor and move shard_lora_weights logic * fix: exit early if no adapter_data --------- Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 12:46:27 -06:00
WORKDIR /usr/src
COPY server/Makefile-lorax-punica Makefile
# Build specific version of transformers
RUN TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" make build-lorax-punica
# Build Transformers CUDA kernels
FROM kernel-builder AS custom-kernels-builder
WORKDIR /usr/src
COPY server/custom_kernels/ .
# Build specific version of transformers
RUN python setup.py build
# Build FBGEMM CUDA kernels
FROM kernel-builder AS fbgemm-builder
WORKDIR /usr/src
COPY server/Makefile-fbgemm Makefile
RUN make build-fbgemm
# Build vllm CUDA kernels
FROM kernel-builder AS vllm-builder
WORKDIR /usr/src
ENV TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
COPY server/Makefile-vllm Makefile
# Build specific version of vllm
RUN make build-vllm-cuda
Impl simple mamba model (#1480) This draft PR is a work in progress implementation of the mamba model. This PR currently loads weights, and produces correct logits after a single pass. This PR still needs to correctly integrate this model so it produces tokens as expected, and apply optimization to avoid all copies during runtime/unnecessary operations. #### Helpful resources [Mamba: Linear-Time Sequence Modeling with Selective State Spaces (Albert Gu and Tri Dao)](https://arxiv.org/abs/2312.00752) https://github.com/johnma2006/mamba-minimal https://github.com/huggingface/candle/blob/main/candle-examples/examples/mamba-minimal/model.rs https://github.com/huggingface/transformers/pull/28094 Notes: this dev work is currently targeting `state-spaces/mamba-130m`, so if you want to test please use that model. Additionally when starting the router the prefill needs to be limited: `cargo run -- --max-batch-prefill-tokens 768 --max-input-length 768` ## Update / Current State Integration tests have been added and basic functionality such as model loading is supported. ```bash cd integration-tests pytest -vv models/test_fused_kernel_mamba.py ``` - [x] add tests - [x] load model - [x] make simple request - [ ] resolve warmup issue - [ ] resolve output issues fetching models tested during dev ```bash text-generation-server download-weights state-spaces/mamba-130m text-generation-server download-weights state-spaces/mamba-1.4b text-generation-server download-weights state-spaces/mamba-2.8b ``` The server can be run ```bash cd server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 python text_generation_server/cli.py serve state-spaces/mamba-2.8b ``` router ```bash cargo run ``` make a request ```bash curl -s localhost:3000/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' | jq ``` response ```json { "generated_text": "\n\nDeep learning is a machine learning technique that uses a deep neural network to learn from data." } ``` --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-02-08 02:19:45 -07:00
# Build mamba kernels
FROM kernel-builder AS mamba-builder
Impl simple mamba model (#1480) This draft PR is a work in progress implementation of the mamba model. This PR currently loads weights, and produces correct logits after a single pass. This PR still needs to correctly integrate this model so it produces tokens as expected, and apply optimization to avoid all copies during runtime/unnecessary operations. #### Helpful resources [Mamba: Linear-Time Sequence Modeling with Selective State Spaces (Albert Gu and Tri Dao)](https://arxiv.org/abs/2312.00752) https://github.com/johnma2006/mamba-minimal https://github.com/huggingface/candle/blob/main/candle-examples/examples/mamba-minimal/model.rs https://github.com/huggingface/transformers/pull/28094 Notes: this dev work is currently targeting `state-spaces/mamba-130m`, so if you want to test please use that model. Additionally when starting the router the prefill needs to be limited: `cargo run -- --max-batch-prefill-tokens 768 --max-input-length 768` ## Update / Current State Integration tests have been added and basic functionality such as model loading is supported. ```bash cd integration-tests pytest -vv models/test_fused_kernel_mamba.py ``` - [x] add tests - [x] load model - [x] make simple request - [ ] resolve warmup issue - [ ] resolve output issues fetching models tested during dev ```bash text-generation-server download-weights state-spaces/mamba-130m text-generation-server download-weights state-spaces/mamba-1.4b text-generation-server download-weights state-spaces/mamba-2.8b ``` The server can be run ```bash cd server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 python text_generation_server/cli.py serve state-spaces/mamba-2.8b ``` router ```bash cargo run ``` make a request ```bash curl -s localhost:3000/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' | jq ``` response ```json { "generated_text": "\n\nDeep learning is a machine learning technique that uses a deep neural network to learn from data." } ``` --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-02-08 02:19:45 -07:00
WORKDIR /usr/src
COPY server/Makefile-selective-scan Makefile
RUN make build-all
Lots of improvements (Still 2 allocators) (#2449) * Making prefix/flashinfer the default and testing the full release tests. * Include flashinfer in the docker. * Using prebuilt. * Allowing window_left_size (dummy version). * Disabling flashinfer/prefix caching on odd head_dim * Disable prefix caching for lora. * More specific codes. * Update lock * Updating integration tests with new values with FI/FD. Remove paged as a default too, and using FD everywhere. * Update cargo lock ? * Upgrade to 1.80 because of bitstream... * Everywhere 1.80 * Forgot last default place. * Apply suggestions from code review Co-authored-by: drbh <david.richard.holtz@gmail.com> * Updated flake lock * Tmp * Upgrade resolution system for less errors in resolution. * Remove lambda for cleaner function. * Handling debugger. * OVerride the env in server tests. * Is this enough to make it work ? * This seems to be working. * Downgrade some logs. * Fixing the default for vlm. * Don't enable prefix caching on VLM just yet. * Change `add_special_tokens` in order to have the correct tokens for chat input and not (since it's super important with the prefixing now) * Fixing prefix caching for flashdecoding. * Update all models. * Fixed flashinfer version. * add_special_tokens is internal only * Fixing seqlen with the new vlms. * Fixing the issue with `add_special_tokens` not being passed around. * Fixing the test. * Removing encoder_decoder (seq2seq). * Update the chat test. * Fixing the batching tokenization in flash causal lm. * Truncating left for radix purposes. * Oops this doesn't belong here. * Put back default pure shell. * Update server tests - Default to throughput test in k6 - Use TGI_WIGGLE_ROOM to adjust wiggle room * Only n_heads / process_group.size() are necessary. * Revert the integrationt tests change (seem linked to head_size modification). * Adding error message when assert is violated. * Fixing the free algorithm to handle times where the common prefix is smaller. * Apply suggestions from code review Co-authored-by: OlivierDehaene <olivier@huggingface.co> * Update server/text_generation_server/layers/attention/common.py Co-authored-by: OlivierDehaene <olivier@huggingface.co> * Fix disabling prefix caching - Fix windowing checks. * Revert the Cohere tokenizer change (for now using a revision instead). * Fmt. --------- Co-authored-by: drbh <david.richard.holtz@gmail.com> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2024-08-29 08:29:01 -06:00
# Build flashinfer
FROM kernel-builder AS flashinfer-builder
WORKDIR /usr/src
COPY server/Makefile-flashinfer Makefile
RUN make install-flashinfer
# Text Generation Inference base image
FROM nvidia/cuda:12.1.0-base-ubuntu22.04 AS base
# Conda env
ENV PATH=/opt/conda/bin:$PATH \
CONDA_PREFIX=/opt/conda
# Text Generation Inference base env
ENV HF_HOME=/data \
2023-02-18 06:04:11 -07:00
HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80
2022-10-14 07:56:21 -06:00
WORKDIR /usr/src
2023-03-24 07:02:14 -06:00
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
libssl-dev \
ca-certificates \
make \
curl \
Pali gemma modeling (#1895) This PR adds paligemma modeling code Blog post: https://huggingface.co/blog/paligemma Transformers PR: https://github.com/huggingface/transformers/pull/30814 install the latest changes and run with ```bash # get the weights # text-generation-server download-weights gv-hf/PaliGemma-base-224px-hf # run TGI text-generation-launcher --model-id gv-hf/PaliGemma-base-224px-hf ``` basic example sending various requests ```python from huggingface_hub import InferenceClient client = InferenceClient("http://127.0.0.1:3000") images = [ "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png", ] prompts = [ "What animal is in this image?", "Name three colors in this image.", "What are 10 colors in this image?", "Where is the cow standing?", "answer en Where is the cow standing?", "Is there a bird in the image?", "Is ther a cow in the image?", "Is there a rabbit in the image?", "how many birds are in the image?", "how many rabbits are in the image?", ] for img in images: print(f"\nImage: {img.split('/')[-1]}") for prompt in prompts: inputs = f"![]({img}){prompt}\n" json_data = { "inputs": inputs, "parameters": { "max_new_tokens": 30, "do_sample": False, }, } generated_output = client.text_generation(prompt, max_new_tokens=30, stream=False) print([f"{prompt}\n{generated_output}"]) ``` --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-05-15 22:58:47 -06:00
git \
&& rm -rf /var/lib/apt/lists/*
2022-10-14 07:56:21 -06:00
# Copy conda with PyTorch installed
COPY --from=pytorch-install /opt/conda /opt/conda
2022-10-14 07:56:21 -06:00
# Copy build artifacts from flash attention builder
COPY --from=flash-att-builder /usr/src/flash-attention/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/layer_norm/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/rotary/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from flash attention v2 builder
COPY --from=flash-att-v2-builder /opt/conda/lib/python3.11/site-packages/flash_attn_2_cuda.cpython-311-x86_64-linux-gnu.so /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from custom kernels builder
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
feat(server): Add exllama GPTQ CUDA kernel support #553 (#666) Just trying to get the integration tests to pass. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Felix Marty <9808326+fxmarty@users.noreply.github.com>
2023-07-21 02:59:00 -06:00
# Copy build artifacts from exllama kernels builder
COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
Exllama v2 (#1211) # What does this PR do? See #1165 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Florian Zimmermeister <flozi00.fz@gmail.com> Co-authored-by: Ubuntu <ubuntu@ip-172-31-24-153.ec2.internal>
2023-11-25 14:38:38 -07:00
# Copy build artifacts from exllamav2 kernels builder
COPY --from=exllamav2-kernels-builder /usr/src/exllamav2/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
Add AWQ quantization inference support (#1019) (#1054) # Add AWQ quantization inference support Fixes https://github.com/huggingface/text-generation-inference/issues/781 This PR (partially) adds support for AWQ quantization for inference. More information on AWQ [here](https://arxiv.org/abs/2306.00978). In general, AWQ is faster and more accurate than GPTQ, which is currently supported by TGI. This PR installs 4-bit GEMM custom CUDA kernels released by AWQ authors (in `requirements.txt`, just one line change). Quick way to test this PR would be bring up TGI as follows: ``` text-generation-server download-weights abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq text-generation-launcher \ --huggingface-hub-cache ~/.cache/huggingface/hub/ \ --model-id abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq \ --trust-remote-code --port 8080 \ --max-input-length 2048 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 \ --quantize awq ``` Please note: * This PR was tested with FlashAttention v2 and vLLM. * This PR adds support for AWQ inference, not quantizing the models. That needs to be done outside of TGI, instructions [here](https://github.com/mit-han-lab/llm-awq/tree/f084f40bd996f3cf3a0633c1ad7d9d476c318aaa). * This PR only adds support for `FlashLlama` models for now. * Multi-GPU setup has not been tested. * No integration tests have been added so far, will add later if maintainers are interested in this change. * This PR can be tested on any of the models released [here](https://huggingface.co/abhinavkulkarni?sort_models=downloads#models). Please refer to the linked issue for benchmarks for [abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq](https://huggingface.co/abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq) vs [TheBloke/Llama-2-7b-Chat-GPTQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ). Please note, AWQ has released faster (and in case of Llama, fused) kernels for 4-bit GEMM, currently at the top of the `main` branch at https://github.com/mit-han-lab/llm-awq, but this PR uses an older commit that has been tested to work. We can switch to latest commit later on. ## Who can review? @OlivierDehaene OR @Narsil --------- # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Abhinav M Kulkarni <abhinavkulkarni@gmail.com> Co-authored-by: Abhinav Kulkarni <abhinav@concentric.ai>
2023-09-25 07:31:27 -06:00
# Copy build artifacts from awq kernels builder
COPY --from=awq-kernels-builder /usr/src/llm-awq/awq/kernels/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
Fixing eetq dockerfile. (#1081) # What does this PR do? Fixes #1079 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-09-29 03:19:06 -06:00
# Copy build artifacts from eetq kernels builder
COPY --from=eetq-kernels-builder /usr/src/eetq/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from lorax punica kernels builder
COPY --from=lorax-punica-builder /usr/src/lorax-punica/server/punica_kernels/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from fbgemm builder
COPY --from=fbgemm-builder /usr/src/fbgemm/fbgemm_gpu/_skbuild/linux-x86_64-3.11/cmake-install /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from vllm builder
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
Impl simple mamba model (#1480) This draft PR is a work in progress implementation of the mamba model. This PR currently loads weights, and produces correct logits after a single pass. This PR still needs to correctly integrate this model so it produces tokens as expected, and apply optimization to avoid all copies during runtime/unnecessary operations. #### Helpful resources [Mamba: Linear-Time Sequence Modeling with Selective State Spaces (Albert Gu and Tri Dao)](https://arxiv.org/abs/2312.00752) https://github.com/johnma2006/mamba-minimal https://github.com/huggingface/candle/blob/main/candle-examples/examples/mamba-minimal/model.rs https://github.com/huggingface/transformers/pull/28094 Notes: this dev work is currently targeting `state-spaces/mamba-130m`, so if you want to test please use that model. Additionally when starting the router the prefill needs to be limited: `cargo run -- --max-batch-prefill-tokens 768 --max-input-length 768` ## Update / Current State Integration tests have been added and basic functionality such as model loading is supported. ```bash cd integration-tests pytest -vv models/test_fused_kernel_mamba.py ``` - [x] add tests - [x] load model - [x] make simple request - [ ] resolve warmup issue - [ ] resolve output issues fetching models tested during dev ```bash text-generation-server download-weights state-spaces/mamba-130m text-generation-server download-weights state-spaces/mamba-1.4b text-generation-server download-weights state-spaces/mamba-2.8b ``` The server can be run ```bash cd server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 python text_generation_server/cli.py serve state-spaces/mamba-2.8b ``` router ```bash cargo run ``` make a request ```bash curl -s localhost:3000/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' | jq ``` response ```json { "generated_text": "\n\nDeep learning is a machine learning technique that uses a deep neural network to learn from data." } ``` --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-02-08 02:19:45 -07:00
# Copy build artifacts from mamba builder
COPY --from=mamba-builder /usr/src/mamba/build/lib.linux-x86_64-cpython-311/ /opt/conda/lib/python3.11/site-packages
COPY --from=mamba-builder /usr/src/causal-conv1d/build/lib.linux-x86_64-cpython-311/ /opt/conda/lib/python3.11/site-packages
COPY --from=flashinfer-builder /opt/conda/lib/python3.11/site-packages/flashinfer/ /opt/conda/lib/python3.11/site-packages/flashinfer/
Impl simple mamba model (#1480) This draft PR is a work in progress implementation of the mamba model. This PR currently loads weights, and produces correct logits after a single pass. This PR still needs to correctly integrate this model so it produces tokens as expected, and apply optimization to avoid all copies during runtime/unnecessary operations. #### Helpful resources [Mamba: Linear-Time Sequence Modeling with Selective State Spaces (Albert Gu and Tri Dao)](https://arxiv.org/abs/2312.00752) https://github.com/johnma2006/mamba-minimal https://github.com/huggingface/candle/blob/main/candle-examples/examples/mamba-minimal/model.rs https://github.com/huggingface/transformers/pull/28094 Notes: this dev work is currently targeting `state-spaces/mamba-130m`, so if you want to test please use that model. Additionally when starting the router the prefill needs to be limited: `cargo run -- --max-batch-prefill-tokens 768 --max-input-length 768` ## Update / Current State Integration tests have been added and basic functionality such as model loading is supported. ```bash cd integration-tests pytest -vv models/test_fused_kernel_mamba.py ``` - [x] add tests - [x] load model - [x] make simple request - [ ] resolve warmup issue - [ ] resolve output issues fetching models tested during dev ```bash text-generation-server download-weights state-spaces/mamba-130m text-generation-server download-weights state-spaces/mamba-1.4b text-generation-server download-weights state-spaces/mamba-2.8b ``` The server can be run ```bash cd server MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 python text_generation_server/cli.py serve state-spaces/mamba-2.8b ``` router ```bash cargo run ``` make a request ```bash curl -s localhost:3000/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' | jq ``` response ```json { "generated_text": "\n\nDeep learning is a machine learning technique that uses a deep neural network to learn from data." } ``` --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-02-08 02:19:45 -07:00
# Install flash-attention dependencies
RUN pip install einops --no-cache-dir
2022-10-14 07:56:21 -06:00
# Install server
COPY proto proto
2022-10-14 07:56:21 -06:00
COPY server server
COPY server/Makefile server/Makefile
2022-10-14 07:56:21 -06:00
RUN cd server && \
make gen-server && \
pip install -r requirements_cuda.txt && \
pip install ".[bnb, accelerate, marlin, quantize, peft, outlines]" --no-cache-dir && \
2024-07-23 15:31:28 -06:00
pip install nvidia-nccl-cu12==2.22.3
ENV LD_PRELOAD=/opt/conda/lib/python3.11/site-packages/nvidia/nccl/lib/libnccl.so.2
# Required to find libpython within the rust binaries
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/opt/conda/lib/"
# This is needed because exl2 tries to load flash-attn
# And fails with our builds.
ENV EXLLAMA_NO_FLASH_ATTN=1
2022-10-14 07:56:21 -06:00
Internal runner ? (#2023) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-06-06 10:51:42 -06:00
# Deps before the binaries
# The binaries change on every build given we burn the SHA into them
# The deps change less often.
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \
g++ \
&& rm -rf /var/lib/apt/lists/*
# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
2022-10-14 07:56:21 -06:00
# Install router
COPY --from=builder /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router
# Install launcher
COPY --from=builder /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher
2022-10-14 07:56:21 -06:00
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
# AWS Sagemaker compatible image
FROM base AS sagemaker
COPY sagemaker-entrypoint.sh entrypoint.sh
RUN chmod +x entrypoint.sh
ENTRYPOINT ["./entrypoint.sh"]
# Final image
FROM base
COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh
RUN chmod +x /tgi-entrypoint.sh
ENTRYPOINT ["/tgi-entrypoint.sh"]
Enable multiple LoRa adapters (#2010) * feat: first draft load multiple lora * feat: load weights within layer and refactor lora pass * fix: refactor and reduce lora math * feat: baseline impl single request multi lora support * feat: prefer lorax implementation and port loading logic * fix: prefer adapter_data and refactors * feat: perfer loraxs custom punica kernels and add mlp loras * fix: adjust batch for bgmv * fix: adjust adapter_segments logic when in batch * fix: refactor and move changes to v3 proto * fix: pass model_id for all flash causal lms * fix: pass model_id for all causal and seq2seq lms * fix: add model_id to model test * feat: add lora support to mistral and refactors * feat: prefer model id in request * fix: include rust code for adapter id * feat: bump launcher and add new lora docs * feat: support base model generation and refactors * fix: rename doc to retry ci build * feat: support if vlm models * fix: add adapter_data param and avoid missing layers * fix: add adapter_data param to phi and neox * fix: update all models forwards to include adapter_data * fix: add model_id to IdeficsCausalLM * Update lora.md Fixed a typo * Update lora.md Fixing spam image * fix: add lora kernel to dockerfile, support running without kernels and refactors * fix: avoid dockerfile conflict * fix: refactors and adjust flash llama lora logic * fix: skip llama test due to CI issue (temp) * fix: skip llama test CI (temp) 2 * fix: revert skips and prefer updated ci token for tests * fix: refactors and helpful comments * fix: add noop in TensorParallelAdapterRowLinear too * fix: refactor and move shard_lora_weights logic * fix: exit early if no adapter_data --------- Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 12:46:27 -06:00
# CMD ["--json-output"]