hf_text-generation-inference/server/text_generation_server/models/causal_lm.py

567 lines
20 KiB
Python
Raw Normal View History

import torch
from dataclasses import dataclass
2023-02-13 05:02:45 -07:00
from opentelemetry import trace
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase
from typing import Optional, Tuple, List, Type, Dict
2023-03-07 10:52:22 -07:00
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
2023-02-13 05:02:45 -07:00
tracer = trace.get_tracer(__name__)
@dataclass
class CausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
requests_idx_mapping: Dict[int, int]
2022-11-07 04:53:56 -07:00
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
2023-01-20 07:35:22 -07:00
position_ids: torch.Tensor
2022-11-07 04:53:56 -07:00
past_key_values: Optional[List[Tuple]]
# All tokens
all_input_ids: List[torch.Tensor]
2022-11-07 04:53:56 -07:00
# Lengths of all generations present in the batch
input_lengths: List[int]
offsets: List[Optional[int]]
token_offsets: List[Optional[int]]
2022-11-07 04:53:56 -07:00
# Generation helpers
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
2022-11-07 04:53:56 -07:00
# Metadata used for padding
max_input_length: int
padding_right_offset: int
2022-12-08 10:49:33 -07:00
# Past metadata
keys_head_dim_last: bool = True
def to_pb(self) -> generate_pb2.Batch:
return generate_pb2.Batch(
id=self.batch_id,
requests=self.requests,
size=len(self),
)
@classmethod
def from_pb(
2023-01-20 04:24:39 -07:00
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
device: torch.device,
) -> "CausalLMBatch":
inputs = []
next_token_choosers = []
stopping_criterias = []
offsets = []
token_offsets = []
requests_idx_mapping = {}
# Parse batch
max_truncation = 0
padding_right_offset = 0
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
offsets.append(None)
token_offsets.append(None)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
stopping_criterias.append(stopping_criteria)
max_truncation = max(max_truncation, r.truncate)
padding_right_offset = max(
padding_right_offset, stopping_criteria.max_new_tokens
)
2022-11-07 04:53:56 -07:00
tokenized_inputs = tokenizer(
2022-12-12 10:25:22 -07:00
inputs,
return_tensors="pt",
padding=True,
2023-01-20 04:24:39 -07:00
return_token_type_ids=False,
truncation=True,
max_length=max_truncation,
).to(device)
input_lengths = tokenized_inputs["attention_mask"].sum(1)
max_input_length = input_lengths.max()
input_ids = tokenized_inputs["input_ids"]
# Allocate maximum attention_mask
attention_mask = input_ids.new_zeros(
(pb.size, max_input_length + padding_right_offset)
)
# Copy tokenizer attention_mask into fully allocated attention_mask
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
2023-01-20 07:35:22 -07:00
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
2023-01-20 07:35:22 -07:00
position_ids=position_ids,
2022-11-07 04:53:56 -07:00
past_key_values=None,
all_input_ids=list(all_input_ids),
input_lengths=input_lengths.tolist(),
offsets=offsets,
token_offsets=token_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length.item(),
padding_right_offset=padding_right_offset,
)
@tracer.start_as_current_span("filter")
def filter(self, requests: List[generate_pb2.Request]) -> Optional["CausalLMBatch"]:
if len(requests) == 0:
raise ValueError("Batch must have at least one request")
if len(requests) == len(self):
return self
keep_indices = []
# New values after filtering
requests_idx_mapping = {}
input_lengths = []
offsets = []
token_offsets = []
all_input_ids = []
max_input_length = 0
next_token_choosers = []
stopping_criterias = []
for i, r in enumerate(requests):
idx = self.requests_idx_mapping[r.id]
requests_idx_mapping[r.id] = i
keep_indices.append(idx)
offsets.append(self.offsets[idx])
token_offsets.append(self.token_offsets[idx])
all_input_ids.append(self.all_input_ids[idx])
request_input_length = self.input_lengths[idx]
input_lengths.append(request_input_length)
max_input_length = max(max_input_length, request_input_length)
next_token_choosers.append(self.next_token_choosers[idx])
stopping_criterias.append(self.stopping_criterias[idx])
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
input_ids = self.input_ids[keep_indices]
attention_mask = self.attention_mask[keep_indices]
position_ids = self.position_ids[keep_indices]
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
past_key_values = [
[t.view(len(self), -1, *t.shape[-2:])[keep_indices] for t in layer]
for layer in self.past_key_values
]
return CausalLMBatch(
batch_id=self.batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
all_input_ids=all_input_ids,
input_lengths=input_lengths,
offsets=offsets,
token_offsets=token_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length,
padding_right_offset=self.padding_right_offset,
keys_head_dim_last=self.keys_head_dim_last,
)
@classmethod
2023-02-13 05:02:45 -07:00
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
# Used for padding
total_batch_size = 0
max_input_length = 0
padding_right_offset = 0
for batch in batches:
total_batch_size += len(batch)
max_input_length = max(max_input_length, batch.max_input_length)
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
# Batch attributes
requests = []
requests_idx_mapping = {}
2022-11-07 04:53:56 -07:00
input_lengths = []
offsets = []
token_offsets = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
2022-11-07 04:53:56 -07:00
# Batch tensors
input_ids = None
attention_mask = None
2023-01-20 07:35:22 -07:00
position_ids = None
2022-11-07 04:53:56 -07:00
past_key_values = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
2022-11-07 04:53:56 -07:00
input_lengths.extend(batch.input_lengths)
offsets.extend(batch.offsets)
token_offsets.extend(batch.token_offsets)
all_input_ids.extend(batch.all_input_ids)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
if i == 0:
requests_idx_mapping = batch.requests_idx_mapping
else:
# We need to offset the mapping for each batch by the cumulative batch size
for k, v in batch.requests_idx_mapping.items():
requests_idx_mapping[k] = v + start_index
# Slicing end index for this batch
end_index = start_index + len(batch)
# We only concatenate batches that did at least one step
2022-12-12 10:25:22 -07:00
if batch.past_key_values is None:
raise ValueError("only concatenate prefilled batches")
2022-11-07 04:53:56 -07:00
# Create empty tensor
# input_ids is always of shape [batch_size, 1]
# We do not need to pad it
if input_ids is None:
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
2022-11-07 04:53:56 -07:00
# Copy to correct indices
input_ids[start_index:end_index] = batch.input_ids
# Create padded tensor
if attention_mask is None:
attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_input_length + padding_right_offset),
)
# We need to slice the attention mask to remove padding from previous steps
# and to remove unused allocated space
left_offset = max_input_length - batch.max_input_length
batch_left_offset = (
batch.attention_mask.shape[1]
- batch.max_input_length
- batch.padding_right_offset
)
2022-11-07 04:53:56 -07:00
attention_mask[
start_index:end_index,
left_offset:-padding_right_offset,
] = batch.attention_mask[
:,
batch_left_offset : -batch.padding_right_offset,
]
2023-01-20 07:35:22 -07:00
# Create empty tensor
# position_ids is always of shape [batch_size, 1]
if position_ids is None:
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
position_ids[start_index:end_index] = batch.position_ids
2022-11-07 04:53:56 -07:00
for j, past in enumerate(batch.past_key_values):
past_keys, past_values = past
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
past_keys = past_keys.view(len(batch), -1, *past_keys.shape[-2:])
past_values = past_values.view(len(batch), -1, *past_values.shape[-2:])
2022-12-01 11:31:54 -07:00
_, num_heads, padded_sequence_length, head_dim = past_values.shape
2022-12-01 11:31:54 -07:00
padded_past_values_shape = (
total_batch_size,
num_heads,
max_input_length - 1,
2022-12-01 11:31:54 -07:00
head_dim,
)
2022-12-08 10:49:33 -07:00
if batch.keys_head_dim_last:
padded_past_keys_shape = padded_past_values_shape
else:
# seq_length is last for BLOOM
2022-12-01 11:31:54 -07:00
padded_past_keys_shape = (
total_batch_size,
num_heads,
head_dim,
max_input_length - 1,
)
# This will run only once per layer
2022-11-07 04:53:56 -07:00
if j == len(past_key_values):
padded_past_keys = past_keys.new_zeros(padded_past_keys_shape)
padded_past_values = past_values.new_zeros(padded_past_values_shape)
past_key_values.append((padded_past_keys, padded_past_values))
# We slice the past keys and values to remove the padding from previous batches
2022-12-08 10:49:33 -07:00
if batch.keys_head_dim_last:
2022-12-01 11:31:54 -07:00
past_key_values[j][0][
start_index:end_index,
:,
-(batch.max_input_length - 1) :,
:,
] = past_keys[:, :, -(batch.max_input_length - 1) :, :]
else:
2022-12-01 11:31:54 -07:00
past_key_values[j][0][
start_index:end_index,
:,
:,
-(batch.max_input_length - 1) :,
] = past_keys[:, :, :, -(batch.max_input_length - 1) :]
2022-12-01 11:31:54 -07:00
past_key_values[j][1][
start_index:end_index, :, -(batch.max_input_length - 1) :, :
] = past_values[:, :, -(batch.max_input_length - 1) :, :]
start_index += len(batch)
return cls(
batch_id=batches[0].batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
2022-11-07 04:53:56 -07:00
attention_mask=attention_mask,
2023-01-20 07:35:22 -07:00
position_ids=position_ids,
2022-11-07 04:53:56 -07:00
past_key_values=past_key_values,
all_input_ids=all_input_ids,
2022-11-07 04:53:56 -07:00
input_lengths=input_lengths,
offsets=offsets,
token_offsets=token_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
2022-12-08 10:49:33 -07:00
keys_head_dim_last=batches[0].keys_head_dim_last,
)
def __len__(self):
return len(self.requests)
class CausalLM(Model):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: bool = False,
decode_buffer: int = 3,
):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
else:
2022-12-08 10:49:33 -07:00
if quantize:
raise ValueError("quantization is not available on CPU")
device = torch.device("cpu")
dtype = torch.float32
2023-01-31 10:53:56 -07:00
tokenizer = AutoTokenizer.from_pretrained(
model_id, revision=revision, padding_side="left", truncation_side="left"
2023-01-31 10:53:56 -07:00
)
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
2023-01-31 10:53:56 -07:00
revision=revision,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
2022-11-07 04:53:56 -07:00
load_in_8bit=quantize,
).eval()
2022-12-08 10:49:33 -07:00
tokenizer.pad_token_id = (
self.model.config.pad_token_id
if self.model.config.pad_token_id is not None
else self.model.config.eos_token_id
)
super(CausalLM, self).__init__(
tokenizer=tokenizer, device=device, decode_buffer=decode_buffer
)
@property
def batch_type(self) -> Type[CausalLMBatch]:
return CausalLMBatch
2023-01-20 04:24:39 -07:00
def decode(self, generated_ids: List[int]) -> str:
return self.tokenizer.decode(
generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
)
def forward(
2023-01-20 07:35:22 -07:00
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
2023-01-20 07:35:22 -07:00
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=True,
)
return outputs.logits, outputs.past_key_values
2023-02-13 05:02:45 -07:00
@tracer.start_as_current_span("generate_token")
def generate_token(
self, batch: CausalLMBatch
) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
# slice the attention mask to the correct shape
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
logits, past = self.forward(
batch.input_ids,
attention_mask,
batch.position_ids,
batch.past_key_values,
)
# Results
generations: List[Generation] = []
stopped = True
# Zipped iterator
iterator = zip(
batch.requests,
2022-11-07 04:53:56 -07:00
batch.input_lengths,
batch.offsets,
batch.token_offsets,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
offset,
token_offset,
logits,
next_token_chooser,
stopping_criteria,
2022-12-15 09:03:56 -07:00
all_input_ids,
) in enumerate(iterator):
# Select next token
2023-02-13 05:02:45 -07:00
next_token_id, logprobs = next_token_chooser(
all_input_ids.view(1, -1), logits
)
# Append next token to all tokens
all_input_ids = torch.cat([all_input_ids, next_token_id])
2022-12-15 09:03:56 -07:00
new_input_length = input_length + 1
# Generated token
next_token_logprob = logprobs[-1, next_token_id]
next_token_id_squeezed = next_token_id.squeeze()
next_token_text, offset, token_offset = self.decode_token(
all_input_ids[:, 0], offset, token_offset
)
# Evaluate stopping criteria
2022-12-16 08:03:39 -07:00
stop, reason = stopping_criteria(
next_token_id_squeezed,
next_token_text,
2022-12-16 08:03:39 -07:00
)
2022-12-12 10:25:22 -07:00
if stop:
2023-01-20 04:24:39 -07:00
# Decode generated tokens
output_text = self.decode(
2023-01-20 04:24:39 -07:00
all_input_ids[-stopping_criteria.current_tokens :, 0]
)
# Get seed
if isinstance(next_token_chooser.choice, Sampling):
seed = next_token_chooser.choice.seed
else:
seed = None
generated_text = GeneratedText(
output_text, stopping_criteria.current_tokens, reason, seed
)
else:
# Keep request in the batch
generated_text = None
stopped = False
# Prefill
if stopping_criteria.current_tokens == 1:
# Remove generated token to only have prefill and add nan for first prompt token
prefill_logprobs = [float("nan")] + logprobs.gather(
1, all_input_ids[1:]
).squeeze(1)[-new_input_length:-1].tolist()
prefill_token_ids = all_input_ids[-new_input_length:-1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(
prefill_token_ids, prefill_logprobs, prefill_texts
)
else:
prefill_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id_squeezed,
next_token_logprob,
next_token_text,
next_token_id_squeezed.item() in self.all_special_ids,
generated_text,
)
generations.append(generation)
# Update values
batch.input_ids[i, 0] = next_token_id
batch.all_input_ids[i] = all_input_ids
batch.input_lengths[i] = new_input_length
batch.offsets[i] = offset
batch.token_offsets[i] = token_offset
batch.max_input_length = max(batch.max_input_length, new_input_length)
# We finished all generations in the batch; there is no next batch
if stopped:
return generations, None
# Slice unused values from prefill
batch.input_ids = batch.input_ids[:, :1]
# Update attention_mask as we added a new token to input_ids
batch.attention_mask[:, -batch.padding_right_offset] = 1
# Decrease right offset
batch.padding_right_offset -= 1
2023-01-20 07:35:22 -07:00
# Update position_ids
batch.position_ids = batch.position_ids[:, -1:] + 1
# Update past key values
batch.past_key_values = past
return generations, batch