2022-12-01 11:31:54 -07:00
|
|
|
import re
|
|
|
|
import torch
|
|
|
|
import torch.distributed
|
|
|
|
|
2023-06-08 06:51:52 -06:00
|
|
|
from typing import List, Optional, Type
|
2022-12-01 11:31:54 -07:00
|
|
|
|
2023-01-20 04:24:39 -07:00
|
|
|
from transformers import (
|
|
|
|
AutoTokenizer,
|
|
|
|
AutoConfig,
|
|
|
|
PreTrainedTokenizerBase,
|
|
|
|
)
|
2023-03-07 10:52:22 -07:00
|
|
|
from text_generation_server.models import CausalLM
|
|
|
|
from text_generation_server.models.causal_lm import CausalLMBatch
|
2023-04-11 11:16:41 -06:00
|
|
|
from text_generation_server.pb import generate_pb2
|
2023-06-08 06:51:52 -06:00
|
|
|
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
|
2023-03-07 10:52:22 -07:00
|
|
|
from text_generation_server.utils import (
|
2022-12-01 11:31:54 -07:00
|
|
|
NextTokenChooser,
|
|
|
|
StoppingCriteria,
|
|
|
|
initialize_torch_distributed,
|
|
|
|
weight_files,
|
2023-06-08 06:51:52 -06:00
|
|
|
Weights,
|
2022-12-01 11:31:54 -07:00
|
|
|
)
|
|
|
|
|
|
|
|
# CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py
|
|
|
|
|
|
|
|
# we split individual characters inside special tokens like [START_DNA]
|
|
|
|
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")
|
|
|
|
|
|
|
|
# token added to implement a custom sequence tokenization. This token is added at
|
|
|
|
# corpus cleaning step and removed in pretokenization. The digits are added to increase the chance
|
|
|
|
# that they do not occur in the corpus. The digits are escaped so that the token does not appear
|
|
|
|
# literally in the source code in case we ever include it in the training data.
|
|
|
|
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"
|
|
|
|
|
|
|
|
|
|
|
|
def _insert_split_marker(m: re.Match):
|
|
|
|
"""
|
|
|
|
Applies split marker based on a regex match of special tokens such as
|
|
|
|
[START_DNA].
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : str
|
|
|
|
Input text to split
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
str - the text with the split token added
|
|
|
|
"""
|
|
|
|
start_token, _, sequence, end_token = m.groups()
|
|
|
|
sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
|
|
|
|
return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"
|
|
|
|
|
|
|
|
|
|
|
|
def escape_custom_split_sequence(text):
|
|
|
|
"""
|
|
|
|
Applies custom splitting to the text for GALILEO's tokenization
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
text : str
|
|
|
|
Input text to split
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
str - the text with the split token added
|
|
|
|
"""
|
|
|
|
return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)
|
|
|
|
|
|
|
|
|
|
|
|
# END CREDIT
|
|
|
|
|
|
|
|
|
|
|
|
class GalacticaCausalLMBatch(CausalLMBatch):
|
|
|
|
@classmethod
|
|
|
|
def from_pb(
|
2023-01-20 04:24:39 -07:00
|
|
|
cls,
|
|
|
|
pb: generate_pb2.Batch,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
2023-05-26 04:30:27 -06:00
|
|
|
dtype: torch.dtype,
|
2023-01-20 04:24:39 -07:00
|
|
|
device: torch.device,
|
2022-12-08 10:49:33 -07:00
|
|
|
) -> "GalacticaCausalLMBatch":
|
2022-12-01 11:31:54 -07:00
|
|
|
inputs = []
|
|
|
|
next_token_choosers = []
|
|
|
|
stopping_criterias = []
|
2023-05-16 15:23:27 -06:00
|
|
|
prefix_offsets = []
|
2023-09-21 00:15:59 -06:00
|
|
|
top_n_tokens = []
|
2023-05-16 15:23:27 -06:00
|
|
|
read_offsets = []
|
2023-04-20 03:07:40 -06:00
|
|
|
requests_idx_mapping = {}
|
2022-12-01 11:31:54 -07:00
|
|
|
|
|
|
|
# Parse batch
|
2023-04-09 12:22:27 -06:00
|
|
|
max_truncation = 0
|
2023-03-07 12:05:21 -07:00
|
|
|
padding_right_offset = 0
|
2023-04-24 09:59:00 -06:00
|
|
|
max_decode_tokens = 0
|
2023-04-20 03:07:40 -06:00
|
|
|
for i, r in enumerate(pb.requests):
|
|
|
|
requests_idx_mapping[r.id] = i
|
2022-12-01 11:31:54 -07:00
|
|
|
# Add escape_custom_split_sequence to the CausalLMBatch logic
|
|
|
|
inputs.append(escape_custom_split_sequence(r.inputs))
|
2024-02-16 03:58:58 -07:00
|
|
|
next_token_choosers.append(
|
|
|
|
NextTokenChooser.from_pb(r.parameters, device, tokenizer)
|
|
|
|
)
|
2023-03-07 12:05:21 -07:00
|
|
|
stopping_criteria = StoppingCriteria.from_pb(
|
|
|
|
r.stopping_parameters, tokenizer
|
|
|
|
)
|
|
|
|
stopping_criterias.append(stopping_criteria)
|
2023-09-21 00:15:59 -06:00
|
|
|
top_n_tokens.append(r.top_n_tokens)
|
2023-04-09 12:22:27 -06:00
|
|
|
max_truncation = max(max_truncation, r.truncate)
|
2023-04-24 09:59:00 -06:00
|
|
|
max_decode_tokens += stopping_criteria.max_new_tokens
|
2023-03-07 12:05:21 -07:00
|
|
|
padding_right_offset = max(
|
|
|
|
padding_right_offset, stopping_criteria.max_new_tokens
|
2022-12-01 11:31:54 -07:00
|
|
|
)
|
|
|
|
|
|
|
|
tokenized_inputs = tokenizer(
|
2023-01-20 04:24:39 -07:00
|
|
|
inputs,
|
|
|
|
return_tensors="pt",
|
|
|
|
padding=True,
|
|
|
|
return_token_type_ids=False,
|
2023-04-09 12:22:27 -06:00
|
|
|
truncation=True,
|
|
|
|
max_length=max_truncation,
|
2022-12-01 11:31:54 -07:00
|
|
|
).to(device)
|
2023-05-16 15:23:27 -06:00
|
|
|
for _ in pb.requests:
|
|
|
|
input_len = tokenized_inputs["input_ids"].shape[1]
|
|
|
|
prefix_offsets.append(0)
|
|
|
|
read_offsets.append(input_len)
|
2023-04-09 12:22:27 -06:00
|
|
|
|
|
|
|
input_lengths = tokenized_inputs["attention_mask"].sum(1)
|
|
|
|
max_input_length = input_lengths.max()
|
|
|
|
|
2023-03-07 12:05:21 -07:00
|
|
|
input_ids = tokenized_inputs["input_ids"]
|
|
|
|
# Allocate maximum attention_mask
|
|
|
|
attention_mask = input_ids.new_zeros(
|
2023-04-09 12:22:27 -06:00
|
|
|
(pb.size, max_input_length + padding_right_offset)
|
2023-03-07 12:05:21 -07:00
|
|
|
)
|
|
|
|
# Copy tokenizer attention_mask into fully allocated attention_mask
|
2023-04-09 12:22:27 -06:00
|
|
|
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
|
2023-03-07 12:05:21 -07:00
|
|
|
|
2023-01-20 07:35:22 -07:00
|
|
|
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
|
|
|
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
2023-04-20 03:07:40 -06:00
|
|
|
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
|
2023-09-21 00:15:59 -06:00
|
|
|
top_n_tokens_tensor = torch.tensor(
|
|
|
|
top_n_tokens, device=device, dtype=torch.int64
|
|
|
|
)
|
2022-12-01 11:31:54 -07:00
|
|
|
|
2023-04-24 09:59:00 -06:00
|
|
|
max_tokens = len(inputs) * max_input_length + max_decode_tokens
|
|
|
|
|
2022-12-01 11:31:54 -07:00
|
|
|
return cls(
|
|
|
|
batch_id=pb.id,
|
|
|
|
requests=pb.requests,
|
2023-04-20 03:07:40 -06:00
|
|
|
requests_idx_mapping=requests_idx_mapping,
|
2023-03-07 12:05:21 -07:00
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
2023-01-20 07:35:22 -07:00
|
|
|
position_ids=position_ids,
|
2022-12-01 11:31:54 -07:00
|
|
|
past_key_values=None,
|
2023-04-20 03:07:40 -06:00
|
|
|
all_input_ids=list(all_input_ids),
|
|
|
|
input_lengths=input_lengths.tolist(),
|
2023-05-16 15:23:27 -06:00
|
|
|
prefix_offsets=prefix_offsets,
|
|
|
|
read_offsets=read_offsets,
|
2022-12-01 11:31:54 -07:00
|
|
|
next_token_choosers=next_token_choosers,
|
|
|
|
stopping_criterias=stopping_criterias,
|
2023-09-21 00:15:59 -06:00
|
|
|
top_n_tokens=top_n_tokens,
|
|
|
|
top_n_tokens_tensor=top_n_tokens_tensor,
|
2023-04-20 03:07:40 -06:00
|
|
|
max_input_length=max_input_length.item(),
|
2023-03-07 12:05:21 -07:00
|
|
|
padding_right_offset=padding_right_offset,
|
2023-04-24 09:59:00 -06:00
|
|
|
max_tokens=max_tokens,
|
2022-12-01 11:31:54 -07:00
|
|
|
)
|
|
|
|
|
|
|
|
|
2023-06-08 06:51:52 -06:00
|
|
|
class GalacticaSharded(CausalLM):
|
2023-01-31 10:53:56 -07:00
|
|
|
def __init__(
|
2023-05-12 06:46:41 -06:00
|
|
|
self,
|
|
|
|
model_id: str,
|
|
|
|
revision: Optional[str] = None,
|
|
|
|
quantize: Optional[str] = None,
|
2023-06-30 12:30:09 -06:00
|
|
|
dtype: Optional[torch.dtype] = None,
|
2023-05-23 12:40:39 -06:00
|
|
|
trust_remote_code: bool = False,
|
2023-01-31 10:53:56 -07:00
|
|
|
):
|
2023-05-10 07:48:21 -06:00
|
|
|
self.process_group, rank, world_size = initialize_torch_distributed()
|
2022-12-01 11:31:54 -07:00
|
|
|
if torch.cuda.is_available():
|
2023-05-10 07:48:21 -06:00
|
|
|
device = torch.device(f"cuda:{rank}")
|
2023-06-30 12:30:09 -06:00
|
|
|
dtype = torch.float16 if dtype is None else dtype
|
2022-12-01 11:31:54 -07:00
|
|
|
else:
|
|
|
|
device = torch.device("cpu")
|
2023-09-19 09:19:28 -06:00
|
|
|
dtype = torch.float32 if dtype is None else dtype
|
2022-12-01 11:31:54 -07:00
|
|
|
|
2023-01-31 10:53:56 -07:00
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
2023-05-23 12:40:39 -06:00
|
|
|
model_id,
|
|
|
|
revision=revision,
|
|
|
|
padding_side="left",
|
|
|
|
truncation_side="left",
|
|
|
|
trust_remote_code=trust_remote_code,
|
2023-01-31 10:53:56 -07:00
|
|
|
)
|
2022-12-01 11:31:54 -07:00
|
|
|
|
2023-01-31 10:53:56 -07:00
|
|
|
config = AutoConfig.from_pretrained(
|
2023-05-23 12:40:39 -06:00
|
|
|
model_id,
|
|
|
|
revision=revision,
|
|
|
|
tp_parallel=True,
|
|
|
|
trust_remote_code=trust_remote_code,
|
2023-01-31 10:53:56 -07:00
|
|
|
)
|
2023-06-08 06:51:52 -06:00
|
|
|
config.quantize = quantize
|
2022-12-01 11:31:54 -07:00
|
|
|
tokenizer.pad_token_id = config.pad_token_id
|
|
|
|
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
2023-02-03 04:43:37 -07:00
|
|
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
2023-06-08 06:51:52 -06:00
|
|
|
weights = Weights(
|
|
|
|
filenames, device=device, dtype=dtype, process_group=self.process_group
|
|
|
|
)
|
feat(server): Using `quantize_config.json` instead of GPTQ_BITS env variables. (#671)
- Current PR is not great because we're side stepping the
`Weights.__init__` but Weights shouldn't requires anything related
to the config or the model_id as it aims to be a simple Wrapper
over multi file loading.
- Ideal solution would be to use something like Rust enum
```
enum Quantize{
Bitandbytes(Bitsandbytes),
GPTQ(bits: usize, groupsize: usize)
```
And passing that around during load. Unfortunately we don't
have access to this, so for now, side-stepping seems easier.
- Re-enabling groupsize<0 with exllama (confirmed it works.)
Helps #601
In next steps we should make sure our quantization script uses that
format and make it standard.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
2023-07-25 05:00:27 -06:00
|
|
|
if config.quantize == "gptq":
|
2023-12-14 03:02:16 -07:00
|
|
|
weights._set_gptq_params(model_id, revision)
|
2022-12-01 11:31:54 -07:00
|
|
|
|
2023-06-08 06:51:52 -06:00
|
|
|
model = OPTForCausalLM(config, weights)
|
2022-12-01 11:31:54 -07:00
|
|
|
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
|
|
super(CausalLM, self).__init__(
|
2023-05-16 15:23:27 -06:00
|
|
|
model=model,
|
2022-12-01 11:31:54 -07:00
|
|
|
tokenizer=tokenizer,
|
2023-04-21 07:36:29 -06:00
|
|
|
requires_padding=True,
|
|
|
|
dtype=dtype,
|
2022-12-01 11:31:54 -07:00
|
|
|
device=device,
|
2023-05-10 07:48:21 -06:00
|
|
|
rank=rank,
|
|
|
|
world_size=world_size,
|
2022-12-01 11:31:54 -07:00
|
|
|
)
|
|
|
|
|
2023-06-08 06:51:52 -06:00
|
|
|
@property
|
|
|
|
def batch_type(self) -> Type[CausalLMBatch]:
|
|
|
|
return GalacticaCausalLMBatch
|
2022-12-01 11:31:54 -07:00
|
|
|
|
2023-06-08 06:51:52 -06:00
|
|
|
def decode(self, generated_ids: List[int]) -> str:
|
|
|
|
# Do not skip special tokens as they are used for custom parsing rules of the generated text
|
|
|
|
return self.tokenizer.decode(
|
|
|
|
generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
|
|
|
|
)
|
2022-12-01 11:31:54 -07:00
|
|
|
|
2023-01-30 07:36:16 -07:00
|
|
|
def forward(
|
|
|
|
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
|
|
|
):
|
2022-12-01 11:31:54 -07:00
|
|
|
outputs = self.model.forward(
|
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
use_cache=True,
|
|
|
|
)
|
2023-06-08 06:51:52 -06:00
|
|
|
return outputs.logits, outputs.past_key_values
|