hf_text-generation-inference/server/text_generation_server/utils/tokens.py

224 lines
6.9 KiB
Python
Raw Normal View History

2023-02-14 05:02:16 -07:00
import re
import torch
from functools import lru_cache
2023-02-14 05:02:16 -07:00
from transformers import (
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
TypicalLogitsWarper,
2023-02-14 05:02:16 -07:00
RepetitionPenaltyLogitsProcessor,
PreTrainedTokenizerBase,
)
from typing import List, Tuple, Optional
2023-03-07 10:52:22 -07:00
from text_generation_server.pb import generate_pb2
from text_generation_server.pb.generate_pb2 import FinishReason
from text_generation_server.utils.watermark import WatermarkLogitsProcessor
2023-02-14 05:02:16 -07:00
class Sampling:
def __init__(self, seed: int, device: str = "cpu"):
self.generator = torch.Generator(device)
self.generator.manual_seed(seed)
self.seed = seed
def __call__(self, logits):
2023-03-24 07:02:14 -06:00
probs = torch.nn.functional.softmax(logits, -1)
# Avoid GPU<->CPU sync done by torch multinomial
# See: https://github.com/pytorch/pytorch/blob/925a3788ec5c06db62ca732a0e9425a26a00916f/aten/src/ATen/native/Distributions.cpp#L631-L637
q = torch.empty_like(probs).exponential_(1, generator=self.generator)
return probs.div_(q).argmax()
2023-02-14 05:02:16 -07:00
class Greedy:
def __call__(self, logits):
return logits.argmax()
class StaticWarper:
2023-02-14 05:02:16 -07:00
def __init__(
self,
temperature=1.0,
top_k=None,
top_p=None,
typical_p=None,
2023-02-14 05:02:16 -07:00
):
self.warpers = []
2023-02-14 05:02:16 -07:00
if temperature is not None and temperature != 1.0:
temperature = float(temperature)
self.warpers.append(TemperatureLogitsWarper(temperature))
2023-02-14 05:02:16 -07:00
if top_k is not None and top_k != 0:
self.warpers.append(TopKLogitsWarper(top_k=top_k))
2023-02-14 05:02:16 -07:00
if top_p is not None and top_p < 1.0:
self.warpers.append(TopPLogitsWarper(top_p=top_p))
if typical_p is not None and typical_p < 1.0:
self.warpers.append(TypicalLogitsWarper(mass=typical_p))
self.cuda_graph = None
self.static_scores = None
self.static_warped_scores = None
self.static_next_logprob = None
def __call__(self, scores):
if self.cuda_graph is None:
self.static_scores = scores
self.cuda_graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(self.cuda_graph):
for warper in self.warpers:
self.static_warped_scores = warper(None, self.static_scores)
# Compute logprobs
self.static_next_logprob = torch.log_softmax(
self.static_warped_scores, -1
)
self.static_scores.copy_(scores)
self.cuda_graph.replay()
return self.static_warped_scores, self.static_next_logprob
2023-02-14 05:02:16 -07:00
@lru_cache(10)
def static_warper(
temperature: Optional[float],
top_k: Optional[int],
top_p: Optional[float],
typical_p: Optional[float],
) -> StaticWarper:
return StaticWarper(
temperature=temperature, top_k=top_k, top_p=top_p, typical_p=typical_p
)
class NextTokenChooser:
def __init__(
self,
watermark=False,
temperature=1.0,
repetition_penalty=1.0,
top_k=None,
top_p=None,
typical_p=None,
do_sample=False,
seed=0,
device="cpu",
):
self.watermark_processor = (
WatermarkLogitsProcessor(device=device) if watermark else None
)
self.repetition_processor = (
RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty)
if repetition_penalty
else None
)
has_warpers = (
(temperature is not None and temperature != 1.0)
or (top_k is not None and top_k != 0)
or (top_p is not None and top_p < 1.0)
or (typical_p is not None and typical_p < 1.0)
)
if has_warpers:
self.static_warper = static_warper(
temperature=temperature, top_k=top_k, top_p=top_p, typical_p=typical_p
)
else:
self.static_warper = None
sampling = do_sample or has_warpers
2023-02-14 05:02:16 -07:00
self.choice = Sampling(seed, device) if sampling else Greedy()
def __call__(self, input_ids, scores):
if self.watermark_processor:
scores = self.watermark_processor(input_ids, scores)
if self.repetition_processor:
scores = self.repetition_processor(input_ids, scores)
2023-02-14 05:02:16 -07:00
if self.static_warper is None:
next_logprob = torch.log_softmax(scores, -1)
else:
scores, next_logprob = self.static_warper(scores)
2023-02-14 05:02:16 -07:00
next_id = self.choice(scores[-1]).view(1, 1)
2023-02-14 05:02:16 -07:00
return next_id, next_logprob
2023-02-14 05:02:16 -07:00
@classmethod
def from_pb(
cls,
pb: generate_pb2.NextTokenChooserParameters,
device: torch.device,
2023-02-14 05:02:16 -07:00
) -> "NextTokenChooser":
return NextTokenChooser(
watermark=pb.watermark,
2023-02-14 05:02:16 -07:00
temperature=pb.temperature,
repetition_penalty=pb.repetition_penalty,
top_k=pb.top_k,
top_p=pb.top_p,
typical_p=pb.typical_p,
2023-02-14 05:02:16 -07:00
do_sample=pb.do_sample,
seed=pb.seed,
device=device,
)
class StopSequenceCriteria:
def __init__(self, stop_sequence: str):
stop_sequence = re.escape(stop_sequence)
2023-02-14 05:02:16 -07:00
self.regex = re.compile(f".*{stop_sequence}$")
def __call__(self, output: str) -> bool:
if self.regex.findall(output):
return True
return False
class StoppingCriteria:
def __init__(
self,
eos_token_id: int,
stop_sequence_criterias: List[StopSequenceCriteria],
max_new_tokens: int = 20,
ignore_eos_token: bool = False,
2023-02-14 05:02:16 -07:00
):
self.eos_token_id = eos_token_id
self.stop_sequence_criterias = stop_sequence_criterias
self.max_new_tokens = max_new_tokens
self.current_tokens = 0
self.current_output = ""
self.ignore_eos_token = ignore_eos_token
2023-02-14 05:02:16 -07:00
def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]:
self.current_tokens += 1
if self.current_tokens >= self.max_new_tokens:
return True, FinishReason.FINISH_REASON_LENGTH
if not self.ignore_eos_token and last_token == self.eos_token_id:
2023-02-14 05:02:16 -07:00
return True, FinishReason.FINISH_REASON_EOS_TOKEN
self.current_output += last_output
for stop_sequence_criteria in self.stop_sequence_criterias:
if stop_sequence_criteria(self.current_output):
return True, FinishReason.FINISH_REASON_STOP_SEQUENCE
return False, None
@classmethod
def from_pb(
cls,
pb: generate_pb2.StoppingCriteriaParameters,
tokenizer: PreTrainedTokenizerBase,
) -> "StoppingCriteria":
stop_sequence_criterias = [
StopSequenceCriteria(sequence) for sequence in pb.stop_sequences
]
return StoppingCriteria(
tokenizer.eos_token_id,
stop_sequence_criterias,
pb.max_new_tokens,
pb.ignore_eos_token,
2023-02-14 05:02:16 -07:00
)