This change adds support for 2:4 sparsity when using Marlin
quantization. The 2:4 kernel is used when:
* The quantizer is `marlin`;
* the quantizer checkpoint format is `marlin_24`.
Fixes#2098.
When the AWQ quantizer was used with a layer that uses a bias,
the bias tensor was not correctly passed/used. Instead, the
value `true`/`1.0` was added to the linear transformation.
Correctly pass through the bias when it is not `None`.
Fixes#2106.
* feat: first draft load multiple lora
* feat: load weights within layer and refactor lora pass
* fix: refactor and reduce lora math
* feat: baseline impl single request multi lora support
* feat: prefer lorax implementation and port loading logic
* fix: prefer adapter_data and refactors
* feat: perfer loraxs custom punica kernels and add mlp loras
* fix: adjust batch for bgmv
* fix: adjust adapter_segments logic when in batch
* fix: refactor and move changes to v3 proto
* fix: pass model_id for all flash causal lms
* fix: pass model_id for all causal and seq2seq lms
* fix: add model_id to model test
* feat: add lora support to mistral and refactors
* feat: prefer model id in request
* fix: include rust code for adapter id
* feat: bump launcher and add new lora docs
* feat: support base model generation and refactors
* fix: rename doc to retry ci build
* feat: support if vlm models
* fix: add adapter_data param and avoid missing layers
* fix: add adapter_data param to phi and neox
* fix: update all models forwards to include adapter_data
* fix: add model_id to IdeficsCausalLM
* Update lora.md
Fixed a typo
* Update lora.md
Fixing spam image
* fix: add lora kernel to dockerfile, support running without kernels and refactors
* fix: avoid dockerfile conflict
* fix: refactors and adjust flash llama lora logic
* fix: skip llama test due to CI issue (temp)
* fix: skip llama test CI (temp) 2
* fix: revert skips and prefer updated ci token for tests
* fix: refactors and helpful comments
* fix: add noop in TensorParallelAdapterRowLinear too
* fix: refactor and move shard_lora_weights logic
* fix: exit early if no adapter_data
---------
Co-authored-by: Derek <datavistics@gmail.com>
* Add pytest release marker
Annotate a test with `@pytest.mark.release` and it only gets run
with `pytest integration-tests --release`.
* Mark many models as `release` to speed up CI
* Removing IPEX_AVAIL.
Chose to unify CPU and XPU under `ipex`. Most code is exactly similar
except for a very few spots.
The biggest number of spots is the kv-cache layout and the flash_xxx.py
files.
Since those files should be removed soon and factored away, we should
not need them.
* Forgot a few places.
* Unrelated change.
* Fixing HF_TOKEN.
* HF_TOKEN
* add CPU tgi support
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* ipex distributed ops support
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Funtowicz Morgan <mfuntowicz@users.noreply.github.com>
* use xpu-smi to dump used memory
xpu use "ZE_AFFINITY_MASK" to control card, usage is like CUDA_VISIBLE_DEVICES
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Update server/text_generation_server/utils/import_utils.py
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
* Fix cargo-chef prepare
In prepare stage, cargo-chef reads Cargo.lock and transforms it accordingly.
If Cargo.lock is not present, cargo-chef will generate a new one first, which
might vary a lot and invalidate docker build caches.
* Fix Dockerfile_amd and Dockerfile_intel
* New runner. Manual squash.
* Network host.
* Put back trufflehog with proper extension.
* No network host ?
* Moving buildx install after tailscale ?
* 1.79
For Phi-3-Small I need to shard a packed QKV bias tensor, for which
I implemented the `Weights.get_packed_sharded` method. However, this
method can also replace the `Weights._get_qweight` method and the
custom sharding code from `Weights.get_weights_col_packed`.