Commit Graph

61 Commits

Author SHA1 Message Date
Nicolas Patry f3b5c69441
Upgrading exl2. (#2415)
* Upgrading exl2.

* Fixing the other pathways.

* Fix idefics.
2024-08-14 11:58:08 +02:00
drbh 1cebccc72b
fix: adds causal to attention params (#2408)
fix: adds causal to attention params to check when using flash attn v1
2024-08-13 16:19:46 +02:00
drbh 8a7749b8fb
fix: include create_exllama_buffers and set_device for exllama (#2407) 2024-08-12 17:59:37 -04:00
Nicolas Patry 84bc3d7b7d
Fixing import exl2 (#2399) 2024-08-12 14:08:59 +02:00
Nicolas Patry 7a48a84784
Using an enum for flash backens (paged/flashdecoding/flashinfer) (#2385)
* Using an enum for flash backens (paged/flashdecoding/flashinfer)

* Early exit on server too.

* Clippy.

* Fix clippy and fmt.
2024-08-09 16:41:17 +02:00
Daniël de Kok 7830de1566
Add FlashInfer support (#2354)
This change adds support for FlashInfer. FlashInfer can be enabled using
`FLASH_INFER=1` and is currently only implemented in `FlashCausalLM`.
Since this functionality is currently only for testing, FlashInfer is
not installed anywhere yet.

The FlashInfer API is quite different from FlashAttention/vLLM in that
it requires more global bookkeeping:

* A wrapper class needs to be contstructed (which we just call *state*).
  Since this is fairly expensive (due to pinned host memory allocation),
  we only do this once in a FlashCausalLM instance or for each CUDA
  Graph size.
* Each model forward call needs to be wrapped in `begin_forward` and
  `end_forward`. This sets up data structures that can be reused for all
  calls to attention for that forward call.

When calling attention, we need access to the state object. To avoid
passing an argument down the call chain (which would require changes to
all models), we use a context variable.

Each model forward call is wrapped using a context manager that does all
the bookkeeping for such a call:

* Set the context variable to the forward call's state.
* Call `begin_forward` on the state.
* Yield.
* Call `end_forward` on the state.
* Reset the context variable.

We cannot use a single shared global variable for this, since e.g. CUDA
Graphs of different sizes each have their own state.
2024-08-09 11:42:00 +02:00
drbh 2ca5980634
Pr 2337 ci branch (#2379)
* hotfix: fix xpu crash brought by code refine. torch.xpu rely on import ipex

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* reable gemma2 in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix in regression in ipex flashattention

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Wang, Yi A <yi.a.wang@intel.com>
2024-08-08 12:30:29 -04:00
drbh 29b8d19cdf
fix: return the out tensor rather then the functions return value (#2361) 2024-08-06 13:49:53 +02:00
drbh 215ed3ad52
fix: attempt forward on flash attn2 to check hardware support (#2335)
* fix: attempt forward on flash attn2 to check hardware support

* fix: warn window_size_left when using flash attn 1

* fix: prefer version check over test op and avoid window_size_left if not flash attn2

* fix: improve condtional and error message

* fix: update sliding window conditional

* fix: simplify changes and revert model changes

* fix: avoid changing conditional

* fix: typo tweak
2024-08-05 09:11:40 -04:00
Daniël de Kok 47447ef017
Unify attention output handling (#2343)
- Always return the hidden states.
- Create the output tensor inside the `attention` and `paged_attention`
  functions.

This removes the difference between how the output is handled between
attention (output parameter) and paged attention (return value). This
also removes the assumption that the attention implementation can
write to an output tensor (in preparation of FlashInfer).
2024-08-01 17:03:28 +02:00
Daniël de Kok 34f7dcfd80
Handle GPTQ-Marlin loading in `GPTQMarlinWeightLoader` (#2300)
The `GPTWeightLoader` was structured like this in pseudocode:

if marlin:
  Set up tensors in a way that GPTQ-Marlin expects
else:
  Set up tensors in a way that ExLlama/GPTQ/AWQ expect

However, the GPT-Marlin implementation details should really be in the
`marlin` module. So move the former part out to a separate
`GPTQMarlinWeightsLoader`.
2024-07-31 13:08:41 +02:00
Daniël de Kok 53aec27328
server quantize: store quantizer config in standard format (#2299)
- Create `quantization_config` option in the model config.
- Don't store the quantizer config in tensors anymore.
2024-07-30 15:16:20 +02:00
Daniël de Kok 922732b255
Install Marlin from standalone package (#2320) 2024-07-29 15:37:10 +02:00
drbh bab02ff2bc
feat: add ruff and resolve issue (#2262)
* feat: add ruff and resolve issue

* fix: update client exports and adjust after rebase

* fix: adjust syntax to avoid circular import

* fix: adjust client ruff settings

* fix: lint and refactor import check and avoid model enum as global names

* fix: improve fbgemm_gpu check and lints

* fix: update lints

* fix: prefer comparing model enum over str

* fix: adjust lints and ignore specific rules

* fix: avoid unneeded quantize check
2024-07-26 10:29:09 -04:00
Daniël de Kok 9256d7c38c
Some small fixes for the Torch 2.4.0 update (#2304)
* Fix GPTQ autotune data type to be compatible with Torch 2.4.0

* Update poetry lock file

* Fix small PaliGemma logprob differences after the torch update
2024-07-25 13:34:44 +02:00
drbh 5d85a958c9
fix: refactor adapter weight loading and mapping (#2193)
* fix: refactor adapter weight loading and mapping

* feat: enable lora load from directory

* fix: adjust launcher for local lora adapters

* feat: improve weight loading and add tests

* fix: improve logging and rebase syntax issue

* fix: impove adapter merge comments and remove unused conditional

* fix: improve get_model_with_lora_adapters naming

* fix: comment typo
2024-07-24 15:32:14 -04:00
Daniël de Kok 93d2b9fe9c
Split up `layers.marlin` into several files (#2292)
The marlin.py file was getting large, split it up.
2024-07-24 16:33:26 +02:00
Daniël de Kok 4ab4173767
Add support for Llama 3 rotary embeddings (#2286)
* Add support for Llama 3 rotary embeddings

* Update transformers to 4.43
2024-07-23 17:18:54 +02:00
Daniël de Kok 9935720c87
Add support for repacking AWQ weights for GPTQ-Marlin (#2278)
* Add support for repacking AWQ weights for GPTQ-Marlin

So far we couldn't support AWQ because virtually all AWQ models use
symmetric quantization, which GPTQ-Marlin did not suppors. GPTQ-Marlin
has recently added support AWQ repacking and AWQ asymmetric quantization
(zero_point=True).

This change updates all GPTQ-Marlin kernels from upstream and wires up
AWQ support. For now enabling AWQ using Marlin requires running TGI with
`--quantize gptq`.

* Enable Marlin for supported AWQ configurations by default

This makes the AWQ -> GPTQ repack test redundant, since we are now
testing this with the regular AWQ test.
2024-07-23 13:08:20 +02:00
OlivierDehaene 5fca30ee15
fix(l4): fix fp8 logic on l4 (#2277)
* fix(l4): fix fp8 logic on l4

* also quant weights with single scale

* use marlin even on 89
2024-07-23 11:24:29 +02:00
Nicolas Patry 6aeb669072
Softcapping for gemma2. (#2273)
* Softcapping for gemma2.

* Less clutter.

* No access to transformers config, only config_dict here.

* 0.0 is the null value in the C++ API.
2024-07-22 18:27:10 +02:00
OlivierDehaene 4844ff790a
fix(server): fix fp8 weight loading (#2268)
* fix(server): fix fp8 weight loading

* fixed scales loading

* update snap

* revert default dtype
2024-07-22 15:51:32 +00:00
OlivierDehaene 53ec0b790b
feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248)
* feat(fp8): add support for fbgemm

* allow loading fp8 weights directly

* update outlines

* fix makefile

* build fbgemm

* avoid circular import and fix dockerfile

* add default dtype

* refactored weights loader

* fix auto conversion

* fix quantization config parsing

* force new nccl on install

* missing get_weights implementation

* increase timeout
2024-07-20 19:02:04 +02:00
Daniël de Kok e52be9bba2
Add support for Deepseek V2 (#2224)
Deepseek V2 is a MoE model from Deepseek. Relevant variations
compared to other models:

- Grouped top-K in expert selection.
- mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
  configuration options.
- `mscale_all_dim` is also used in scaling attention softmax.
- Permuting of the query/key representations before applying rotary
  embeddings.
- Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
  So, we need weight loads that supports quantized weights. To this
  end `{Weights,WeightLoader}.get_weight` was added.
- The query/key head dimensionality differs from that of the value,
  so we need to pad during attention.
- Heads with size 192, needs an extension to our paged attention
  fork and we need to ensure that the KV cache is allocated with the
  correct size.
- Shared experts.
2024-07-19 17:23:20 +02:00
Daniël de Kok ba291dad9f
Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights

Handling of quantized weights was split between two mechanisms:

- For quantized checkpoints, we used the new weight loader
  infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
  instead relied on conditional in `get_linear`.

Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.

This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:

- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
  `get_linear` does not need to know how to handle quantizer linear
  layers.
- All quantizer weights are strongly typed, we don't pass around
  raw tensors.
- We don't have to pass around the `quantizer` string everywhere.

* Exclude non-MLP layers when using FP8 quantization with Llama
2024-07-19 09:37:39 +02:00
Daniël de Kok dbb23fbfa8
Use symmetric quantization in the `quantize` subcommand (#2120)
Packing of asymmetric quantization is broken, all (q)zeros values
of `0` get reset to `1`, resulting in a loss of accuracy. So instead
use symmetric quantization. To be able to distinguish models with
symmetric and asymmetric quantization, a new config tensor `gptq_sym` is
added. If this tensor is not present, we assume `sym=False`.
2024-07-12 12:20:12 +02:00
SeongBeomLEE c46eaf707b
[fix] Modifying base in yarn embedding (#2212) 2024-07-12 10:04:51 +02:00
Daniël de Kok cb150eb295
Add support for FP8 on compute capability >=8.0, <8.9 (#2213)
Use FP8 GPTQ-Marlin kernels to enable FP8 support on CUDA GPUs
with compute capability >=8.0 and <8.9.

Co-authored-by: Florian Zimmermeister <flozi00.fz@gmail.com>
2024-07-11 16:03:26 +02:00
Daniël de Kok 8511669cb2
Move quantized weight handling out of the `Weights` class (#2194)
Quantized weights were loaded in the `Weights` class, but this was
getting quite unwieldy, where every higher level method to load weights
was a long conditional to cover all the different quantizers.

This change moves loading of quantized weights out of the `Weights`
class. This is done by defining a simple `WeightsLoader` interface
that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`,
and `MarlinWeightsLoader`. These implementations are in the quantizers'
respective modules. The `Weights` class provides the low-level load
operations (such as loading tensors or sharded tensors), but delegates
loads that need quantizer-specific weight processing to a loader. The
loaders still use the low-level functionality provided by `Weights`.

I initially tried making a hierarchy where a class like `GPTQWeights`
would inherit from `Weights`. But it is not very flexible (e.g. does
not work well with the new weight storage mock used in tests) and
the implicit indirections made the code harder to follow.
2024-07-09 20:04:03 +02:00
Aaron Mihalik c6bcadf883
Adding "longrope" for Phi-3 (#2172) (#2179)
Adding "longrope" for phi-3
2024-07-05 09:46:41 +02:00
Nicolas Patry dea9c0dc74
Fixing rocm. (#2164) 2024-07-02 12:01:08 +02:00
Wang, Yi 5d97e0c4a3
fix FlashDecoding change's regression in intel platform (#2161)
install triton because GPTQParams needs it.

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-02 11:56:07 +02:00
Nicolas Patry 4327210e6b
[Major Change][Undecided yet] Move to FlashDecoding instead of PagedAttention kernel. (#1940)
* Using flash decoding

Conditional flashdecoding.

Fix max_q.

Working kvcache

Working version with flash decoding.

Make it work for mistral.

Fix after rebase..

Less intrusive.

REvert changes in modeling.

Speedup flashdecoding.

HHachweew
Hack to make other models work.

Fixing non flash decoding llama path.

Router logic knows about page size.

Missing 2 models.

Missing cohere.

Fixing cohere flash decoding.

Revamped all this architecture.

Fix cohere.

Fixing falcon.

Enabling custom block size schedule.

Update router/src/infer.rs

Not sending preallocated output.

* Making it work on non flash decoding.

* Fix Cohere.

* Fix non decoding paths.

* Rebased.

* No need for cache_manager anymore.

* Update?

* "ipex" -> "cpu"

* These do not belong.

* Factoring cu_seqlen_qk for better abstracting over every model.

* Fixing non flash tests/imports.

* Changing return everywhere.

* Update mistral past.

* Fixing Mi{s,x}tral (non functional in Flash Decoding mode though).

* Fixup mistral clamping (had issues with cuda graphs).

* No need to recreate anything actually.
2024-07-01 23:28:00 +02:00
Wang, Yi 5da4cfab1c
refine get xpu free memory/enable Qwen2/gemma2/gemma/phi in intel platform (#2132)
* refine get xpu free memory

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable qwen2 in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* enable gemma/gemma2/phi in intel platform

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-07-01 14:32:54 +02:00
Daniël de Kok 2ce8019480
Use GPTQ-Marlin for supported GPTQ configurations (#2111)
GPTQ-Marlin is currently the best-performing kernel for GPTQ models. So
let's use it by default if the kernels are installed, the GPU supports
it, and the kernels support the configuration.

For models generated by `text-generation-server quantize`, use
`sym=False`. This subcommand symmetric quantization since the beginning
and incorrectly reporting the model to be symmetric will use
GPTQ-Marlin (which does not support asymmetric quantization).
2024-07-01 12:59:12 +02:00
Daniël de Kok f1f98e369f
Add support for Marlin 2:4 sparsity (#2102)
This change adds support for 2:4 sparsity when using Marlin
quantization. The 2:4 kernel is used when:

* The quantizer is `marlin`;
* the quantizer checkpoint format is `marlin_24`.

Fixes #2098.
2024-06-25 21:09:42 +02:00
Daniël de Kok 14980df2df
Support AWQ quantization with bias (#2117)
When the AWQ quantizer was used with a layer that uses a bias,
the bias tensor was not correctly passed/used. Instead, the
value `true`/`1.0` was added to the linear transformation.

Correctly pass through the bias when it is not `None`.

Fixes #2106.
2024-06-25 21:09:00 +02:00
drbh 04e1af94d7
Enable multiple LoRa adapters (#2010)
* feat: first draft load multiple lora

* feat: load weights within layer and refactor lora pass

* fix: refactor and reduce lora math

* feat: baseline impl single request multi lora support

* feat: prefer lorax implementation and port loading logic

* fix: prefer adapter_data and refactors

* feat: perfer loraxs custom punica kernels and add mlp loras

* fix: adjust batch for bgmv

* fix: adjust adapter_segments logic when in batch

* fix: refactor and move changes to v3 proto

* fix: pass model_id for all flash causal lms

* fix: pass model_id for all causal and seq2seq lms

* fix: add model_id to model test

* feat: add lora support to mistral and refactors

* feat: prefer model id in request

* fix: include rust code for adapter id

* feat: bump launcher and add new lora docs

* feat: support base model generation and refactors

* fix: rename doc to retry ci build

* feat: support if vlm models

* fix: add adapter_data param and avoid missing layers

* fix: add adapter_data param to phi and neox

* fix: update all models forwards to include adapter_data

* fix: add model_id to IdeficsCausalLM

* Update lora.md

Fixed a typo

* Update lora.md

Fixing spam image

* fix: add lora kernel to dockerfile, support running without kernels and refactors

* fix: avoid dockerfile conflict

* fix: refactors and adjust flash llama lora logic

* fix: skip llama test due to CI issue (temp)

* fix: skip llama test CI (temp) 2

* fix: revert skips and prefer updated ci token for tests

* fix: refactors and helpful comments

* fix: add noop in TensorParallelAdapterRowLinear too

* fix: refactor and move shard_lora_weights logic

* fix: exit early if no adapter_data

---------

Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 14:46:27 -04:00
Nicolas Patry 9e2fdf57c0
Removing IPEX_AVAIL. (#2115)
* Removing IPEX_AVAIL.

Chose to unify CPU and XPU under `ipex`. Most code is exactly similar
except for a very few spots.

The biggest number of spots is the kv-cache layout and the flash_xxx.py
files.
Since those files should be removed soon and factored away, we should
not need them.

* Forgot a few places.

* Unrelated change.

* Fixing HF_TOKEN.

* HF_TOKEN
2024-06-25 13:20:57 +02:00
Wang, Yi b64c70c9e7
Cpu tgi (#1936)
* add CPU tgi support

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* ipex distributed ops support

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Funtowicz Morgan <mfuntowicz@users.noreply.github.com>
2024-06-25 12:21:29 +02:00
Daniël de Kok 197c47a302
Fix `text-generation-server quantize` (#2103)
The subcommand did not work due to some broken imports.
2024-06-21 15:28:51 +02:00
Daniël de Kok 093a27c528
Add support for GPTQ Marlin (#2052)
Add support for GPTQ Marlin kernels

GPTQ Marlin extends the Marlin kernels to support common GPTQ
configurations:

- bits: 4 or 8
- groupsize: -1, 32, 64, or 128
- desc_act: true/false

Using the GPTQ Marlin kernels requires repacking the parameters in the
Marlin quantizer format.

The kernels were contributed by Neural Magic to VLLM. We vendor them
here for convenience.
2024-06-14 09:45:42 +02:00
OlivierDehaene 90184df79c
fix(layers): fix SuRotaryEmbedding (#2060)
* fix(layers): fix SuRotaryEmbedding

* change arange

* remove logs
2024-06-12 18:24:47 +02:00
Daniël de Kok 85dfc39222
Add Phi-3 medium support (#2039)
Add support for Phi-3-medium

The main difference between the medium and mini models is that medium
uses grouped query attention with a packed QKV matrix. This change adds
support for GQA with packed matrixes to `Weights.get_weights_col_packed`
and uses it for Phi-3. This also allows us to remove the custom
implementation of GQA from dbrx attention loading.
2024-06-10 09:22:29 +02:00
fxmarty 9b3674d903
ROCm and sliding windows fixes (#2033)
* update vllm commit & fix models using sliding window

* update

* update commit

* fix bug where tunableop is bound to cuda graph even when cuda graph are disabled

* enable tunableop by default

* fix sliding window

* address review

* dead code

* precise comment

* is it flaky?
2024-06-10 15:09:50 +08:00
Daniël de Kok 4594e6faba Add support for Marlin-quantized models
This change adds support for Marlin-quantized models. Marlin is an
FP16xINT4 matmul kernel, which provides good speedups decoding batches
of 16-32 tokens. It supports quantized models with symmetric
quantization, groupsize -1 or 128, and 4-bit.

Tested with:

- Llama 2
- Llama 3
- Phi 3
2024-06-06 13:16:52 +02:00
Daniël de Kok 3f4bcf978c
Fix GPTQWeight import (#2020)
# What does this PR do?

Fix stray import.

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-05 14:49:15 +02:00
Nicolas Patry 0a94fad79f
Fixing rocm. (#2021)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-05 14:41:34 +02:00
Daniël de Kok 9ffe1f1e67
Do not initialize scratch space when there are no ExLlamaV2 layers (#2015)
# What does this PR do?

Do not attempt to allocate ExLlamaV2 scratch buffers when there are no
ExLlama2 layers. Avoids a crash in warmup for models that cannot use
exllama when ExLlamaV2 is installed.

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-05 10:45:47 +02:00
Nicolas Patry 9a59ebcec3 Hotfix GPTQ. 2024-06-03 09:32:12 +00:00