* Add API_Key for Auth and conditionally add authorisation for non info/health endpoints.
* change name to info routes
* Fix comment
* convert strings to lowercase for case insensitive comparison
* convert header to string
* fixes and update docs
* update docs again
* revert wrong update
---------
Co-authored-by: Kevin Duffy <kevin.duffy94@gmail.com>
* Fix GPTQ autotune data type to be compatible with Torch 2.4.0
* Update poetry lock file
* Fix small PaliGemma logprob differences after the torch update
* fix crash in multi-modal
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* update according to review comment
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix llava_next regression in latest main
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Support passing head_dim through config
* Using `head_dim` as a fallback is necessary since it's a non standard
key in mistralConfig (as defined in transformers).
* Shorter diff.
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Add support for repacking AWQ weights for GPTQ-Marlin
So far we couldn't support AWQ because virtually all AWQ models use
symmetric quantization, which GPTQ-Marlin did not suppors. GPTQ-Marlin
has recently added support AWQ repacking and AWQ asymmetric quantization
(zero_point=True).
This change updates all GPTQ-Marlin kernels from upstream and wires up
AWQ support. For now enabling AWQ using Marlin requires running TGI with
`--quantize gptq`.
* Enable Marlin for supported AWQ configurations by default
This makes the AWQ -> GPTQ repack test redundant, since we are now
testing this with the regular AWQ test.
Deepseek V2 is a MoE model from Deepseek. Relevant variations
compared to other models:
- Grouped top-K in expert selection.
- mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
configuration options.
- `mscale_all_dim` is also used in scaling attention softmax.
- Permuting of the query/key representations before applying rotary
embeddings.
- Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
So, we need weight loads that supports quantized weights. To this
end `{Weights,WeightLoader}.get_weight` was added.
- The query/key head dimensionality differs from that of the value,
so we need to pad during attention.
- Heads with size 192, needs an extension to our paged attention
fork and we need to ensure that the KV cache is allocated with the
correct size.
- Shared experts.
* draft of usage stats
* fix wrong link
* launcher doesn't need sysinfo dep
* only tokenizer class instead of hole struct
* unused import
* fix clippy errors
* update openAPI doc
* cargo fmt
* fix error in passing flags to router
* try again to update docs
* run pre-commit locally
* Update router/src/main.rs
Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
* Update router/src/main.rs
Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
* on crash use anonymous error event
* delete json_output and ngrok
* more robust way of checking if is in container
* more robust nvidia smi
* parse xpu more robustly
* fix errors
* add nvidia-smi details in docs
* cargo fmt
* fix clippy
* should make docs check pass
* Update router/src/usage_stats.rs
Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
* error reason can't be in nested json
* cargo fmt
---------
Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
Co-authored-by: Erik Kaunismäki <erikkaum@Eriks-MacBook-Pro.local>
* Improve the handling of quantized weights
Handling of quantized weights was split between two mechanisms:
- For quantized checkpoints, we used the new weight loader
infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
instead relied on conditional in `get_linear`.
Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.
This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:
- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
`get_linear` does not need to know how to handle quantizer linear
layers.
- All quantizer weights are strongly typed, we don't pass around
raw tensors.
- We don't have to pass around the `quantizer` string everywhere.
* Exclude non-MLP layers when using FP8 quantization with Llama
* feat: simple mistral lora integration tests
* fix: include args in docker launcher
* fix: disable cuda graphs with lora and warn
* fix: adjust docs and precommit issues
* fix: re update docs
Packing of asymmetric quantization is broken, all (q)zeros values
of `0` get reset to `1`, resulting in a loss of accuracy. So instead
use symmetric quantization. To be able to distinguish models with
symmetric and asymmetric quantization, a new config tensor `gptq_sym` is
added. If this tensor is not present, we assume `sym=False`.