Commit Graph

45 Commits

Author SHA1 Message Date
OlivierDehaene e7e3aa6cac
chore: update to torch 2.4 (#2259)
* chore: update to torch 2.4

* remove un-necessary patch

* fix
2024-07-23 20:39:43 +00:00
OlivierDehaene 53ec0b790b
feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248)
* feat(fp8): add support for fbgemm

* allow loading fp8 weights directly

* update outlines

* fix makefile

* build fbgemm

* avoid circular import and fix dockerfile

* add default dtype

* refactored weights loader

* fix auto conversion

* fix quantization config parsing

* force new nccl on install

* missing get_weights implementation

* increase timeout
2024-07-20 19:02:04 +02:00
Hugo Larcher 0ad7f6f87d
fix: Remove bitsandbytes installation when running cpu-only install (#2216)
Remove bitsandbytes installation when running cpu-only install
2024-07-15 15:34:20 +02:00
fxmarty 4c50b6d04b
Fix nccl regression on PyTorch 2.3 upgrade (#2099)
* fix nccl issue

* add note in dockerfile

* use v2.22.3 that also fixes @samsamoa's repro

* poetry actually can't handle the conflict between torch and nccl

* set LD_PRELOAD
2024-07-08 17:52:10 +02:00
drbh 04e1af94d7
Enable multiple LoRa adapters (#2010)
* feat: first draft load multiple lora

* feat: load weights within layer and refactor lora pass

* fix: refactor and reduce lora math

* feat: baseline impl single request multi lora support

* feat: prefer lorax implementation and port loading logic

* fix: prefer adapter_data and refactors

* feat: perfer loraxs custom punica kernels and add mlp loras

* fix: adjust batch for bgmv

* fix: adjust adapter_segments logic when in batch

* fix: refactor and move changes to v3 proto

* fix: pass model_id for all flash causal lms

* fix: pass model_id for all causal and seq2seq lms

* fix: add model_id to model test

* feat: add lora support to mistral and refactors

* feat: prefer model id in request

* fix: include rust code for adapter id

* feat: bump launcher and add new lora docs

* feat: support base model generation and refactors

* fix: rename doc to retry ci build

* feat: support if vlm models

* fix: add adapter_data param and avoid missing layers

* fix: add adapter_data param to phi and neox

* fix: update all models forwards to include adapter_data

* fix: add model_id to IdeficsCausalLM

* Update lora.md

Fixed a typo

* Update lora.md

Fixing spam image

* fix: add lora kernel to dockerfile, support running without kernels and refactors

* fix: avoid dockerfile conflict

* fix: refactors and adjust flash llama lora logic

* fix: skip llama test due to CI issue (temp)

* fix: skip llama test CI (temp) 2

* fix: revert skips and prefer updated ci token for tests

* fix: refactors and helpful comments

* fix: add noop in TensorParallelAdapterRowLinear too

* fix: refactor and move shard_lora_weights logic

* fix: exit early if no adapter_data

---------

Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 14:46:27 -04:00
Daniël de Kok 093a27c528
Add support for GPTQ Marlin (#2052)
Add support for GPTQ Marlin kernels

GPTQ Marlin extends the Marlin kernels to support common GPTQ
configurations:

- bits: 4 or 8
- groupsize: -1, 32, 64, or 128
- desc_act: true/false

Using the GPTQ Marlin kernels requires repacking the parameters in the
Marlin quantizer format.

The kernels were contributed by Neural Magic to VLLM. We vendor them
here for convenience.
2024-06-14 09:45:42 +02:00
Daniël de Kok 4594e6faba Add support for Marlin-quantized models
This change adds support for Marlin-quantized models. Marlin is an
FP16xINT4 matmul kernel, which provides good speedups decoding batches
of 16-32 tokens. It supports quantized models with symmetric
quantization, groupsize -1 or 128, and 4-bit.

Tested with:

- Llama 2
- Llama 3
- Phi 3
2024-06-06 13:16:52 +02:00
Nicolas Patry 8390e251d9
Making `make install` work better by default. (#2004)
# What does this PR do?

Making `make install` a much better sane default to start local dev
environments.

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-06-04 19:38:46 +02:00
OlivierDehaene 757223b352
feat: add SchedulerV3 (#1996)
- Refactor code to allow supporting multiple versions of the
generate.proto at the same time
- Add v3/generate.proto (ISO to generate.proto for now but allow for
future changes without impacting v2 backends)
- Add Schedule trait to abstract queuing and batching mechanisms that
will be different in the future
- Add SchedulerV2/V3 impl
2024-06-04 15:56:56 +02:00
OlivierDehaene ad9d6288c8
fix: fix CohereForAI/c4ai-command-r-plus (#1707)
@Narsil @drbh this will update flash attention v2 and vllm.
You will need to re-install them.
2024-04-10 17:20:25 +02:00
OlivierDehaene 1e9bcd9dd8
feat: cohere (#1660) 2024-03-22 17:59:25 +01:00
OlivierDehaene 4139054b82
v1.4.1 (#1568) 2024-02-16 17:50:57 +01:00
drbh bd405e035b
Impl simple mamba model (#1480)
This draft PR is a work in progress implementation of the mamba model.
This PR currently loads weights, and produces correct logits after a
single pass.

This PR still needs to correctly integrate this model so it produces
tokens as expected, and apply optimization to avoid all copies during
runtime/unnecessary operations.

#### Helpful resources
[Mamba: Linear-Time Sequence Modeling with Selective State Spaces
(Albert Gu and Tri Dao)](https://arxiv.org/abs/2312.00752)
https://github.com/johnma2006/mamba-minimal

https://github.com/huggingface/candle/blob/main/candle-examples/examples/mamba-minimal/model.rs
https://github.com/huggingface/transformers/pull/28094

Notes: this dev work is currently targeting `state-spaces/mamba-130m`,
so if you want to test please use that model. Additionally when starting
the router the prefill needs to be limited: `cargo run --
--max-batch-prefill-tokens 768 --max-input-length 768`


## Update / Current State

Integration tests have been added and basic functionality such as model
loading is supported.

```bash
cd integration-tests
pytest -vv models/test_fused_kernel_mamba.py
```
- [x] add tests
- [x] load model
- [x] make simple request 
- [ ] resolve warmup issue
- [ ] resolve output issues


fetching models tested during dev
```bash
text-generation-server download-weights state-spaces/mamba-130m
text-generation-server download-weights state-spaces/mamba-1.4b
text-generation-server download-weights state-spaces/mamba-2.8b
```

The server can be run 
```bash
cd server
 MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 python text_generation_server/cli.py serve state-spaces/mamba-2.8b
```

router
```bash
cargo run
```

make a request
```bash
curl -s localhost:3000/generate \
    -X POST \
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
    -H 'Content-Type: application/json' | jq
```

response
```json
{
  "generated_text": "\n\nDeep learning is a machine learning technique that uses a deep neural network to learn from data."
}
```

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-02-08 10:19:45 +01:00
OlivierDehaene 3a521c92b3
feat: mixtral (#1328) 2023-12-11 14:43:40 +01:00
fxmarty b2b5df0e94
Add RoCm support (#1243)
This PR adds support for AMD Instinct MI210 & MI250 GPUs, with paged
attention and FAv2 support.

Remaining items to discuss, on top of possible others:
* Should we have a
`ghcr.io/huggingface/text-generation-inference:1.1.0+rocm` hosted image,
or is it too early?
* Should we set up a CI on MI210/MI250? I don't have access to the
runners of TGI though.
* Are we comfortable with those changes being directly in TGI, or do we
need a fork?

---------

Co-authored-by: Felix Marty <felix@hf.co>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
Co-authored-by: Your Name <you@example.com>
2023-11-27 14:08:12 +01:00
OlivierDehaene 35509ff5de
chore: update to torch 2.1.0 (#1182)
Close #1142
2023-11-23 13:38:50 +01:00
Nicolas Patry 95a4bb696a
Support eetq weight only quantization (#1068)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->

---------

Co-authored-by: zhaosida <zhaosida@corp.netease.com>
2023-09-27 11:42:57 +02:00
Nicolas Patry c5de7cd886
Add AWQ quantization inference support (#1019) (#1054)
# Add AWQ quantization inference support

Fixes
https://github.com/huggingface/text-generation-inference/issues/781

This PR (partially) adds support for AWQ quantization for inference.
More information on AWQ [here](https://arxiv.org/abs/2306.00978). In
general, AWQ is faster and more accurate than GPTQ, which is currently
supported by TGI.

This PR installs 4-bit GEMM custom CUDA kernels released by AWQ authors
(in `requirements.txt`, just one line change).

Quick way to test this PR would be bring up TGI as follows:

```
text-generation-server download-weights abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq

text-generation-launcher \
--huggingface-hub-cache ~/.cache/huggingface/hub/ \
--model-id abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq \
--trust-remote-code --port 8080 \
--max-input-length 2048 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 \
--quantize awq
```

Please note:
* This PR was tested with FlashAttention v2 and vLLM.
* This PR adds support for AWQ inference, not quantizing the models.
That needs to be done outside of TGI, instructions

[here](f084f40bd9).
* This PR only adds support for `FlashLlama` models for now.
* Multi-GPU setup has not been tested. 
* No integration tests have been added so far, will add later if
maintainers are interested in this change.
* This PR can be tested on any of the models released

[here](https://huggingface.co/abhinavkulkarni?sort_models=downloads#models).

Please refer to the linked issue for benchmarks for

[abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq](https://huggingface.co/abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq)
vs

[TheBloke/Llama-2-7b-Chat-GPTQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ).

Please note, AWQ has released faster (and in case of Llama, fused)
kernels for 4-bit GEMM, currently at the top of the `main` branch at
https://github.com/mit-han-lab/llm-awq, but this PR uses an older commit
that has been tested to work. We can switch to latest commit later on.

## Who can review?

@OlivierDehaene OR @Narsil

---------



# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->

---------

Co-authored-by: Abhinav M Kulkarni <abhinavkulkarni@gmail.com>
Co-authored-by: Abhinav Kulkarni <abhinav@concentric.ai>
2023-09-25 15:31:27 +02:00
OlivierDehaene 2efd46ef95 fix(server): fix missing datasets in quantize 2023-07-27 14:50:45 +02:00
OlivierDehaene 3b71c38558
feat(server): flash attention v2 (#624) 2023-07-18 16:21:18 +02:00
Antoni Baum 8405581fcd
fix: Update server/Makefile to include Makefile-vllm (#520)
# What does this PR do?

For consistency and ease of use (you can just run `make` to install vllm
without any extra steps).

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2023-07-04 09:39:25 +02:00
Nicolas Patry abd58ff82c
feat(server): Rework model loading (#344)
# What does this PR do?

Reworked the loading logic. Idea is to use cleaner loading code:

- Remove need for `no_init_weights`
- Remove all weird `bnb_linear` and `load_weights` and
`post_load_weights`.

New code layout:

- New class `Weights` in charge of handling loading the weights from
multiple files into appropiate tensors (potentially sharded)
- TP layers now are "shells", they contain the code to know what kind of
sharding we need + eventual `all_reduce`. They do not inherit from
linear, but they contain some kind of Linear instead
- the contained linear can be either FastLinear, BnbLinear or GPTq
Linear next.
- All modeling code is explictly made for sharding, process group is
just no-ops for non sharded code (removes a lot of test cases)

![Screenshot from 2023-05-19
23-19-59](https://github.com/huggingface/text-generation-inference/assets/204321/9a802654-74a3-488c-87a8-073743a6143f)

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.taildb5d.ts.net>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
2023-06-08 14:51:52 +02:00
OlivierDehaene 5a58226130
fix(server): fix decode token (#334)
Fixes #333

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-05-16 23:23:27 +02:00
OlivierDehaene 709d8936f6
feat(router): drop requests when client closes the channel (#202) 2023-04-20 11:07:40 +02:00
OlivierDehaene 6837b2eb77
fix(docker): remove unused dependencies (#205) 2023-04-19 19:39:31 +02:00
OlivierDehaene 7a1ba58557
fix(docker): fix docker image dependencies (#187) 2023-04-17 00:26:47 +02:00
OlivierDehaene 1883d8ecde
feat(docker): improve flash_attention caching (#160) 2023-04-09 19:59:16 +02:00
Nick Hill 8e8dd984d8
feat(server): Add mypy-protobuf (#141)
Generates .pyi files for protobuf stubs which provide strong typing
information. Very helpful for IDE auto-completion, etc.
2023-03-27 09:25:15 +02:00
OlivierDehaene 05e9a796cc
feat(server): flash neoX (#133) 2023-03-24 14:02:14 +01:00
OlivierDehaene 8ad60b752f
fix(server): add position ids to neox (#126) 2023-03-15 13:12:49 +01:00
OlivierDehaene cbd36aa4d1
fix(server): revert gpt-neox optims (#123) 2023-03-13 22:57:08 +01:00
OlivierDehaene 3fef90d50f
feat(clients): Python client (#103) 2023-03-07 18:52:22 +01:00
OlivierDehaene 1c19b0934e
v0.3.2 (#97) 2023-03-03 18:42:20 +01:00
OlivierDehaene 0b6807caa4
feat(server): fix transformers commit (#96) 2023-03-03 17:56:27 +01:00
OlivierDehaene 9af454142a
feat: add distributed tracing (#62) 2023-02-13 13:02:45 +01:00
OlivierDehaene 13e7044ab7
fix(dockerfile): fix docker build (#32) 2023-01-24 19:52:39 +01:00
OlivierDehaene a2985036aa
feat(server): Add model tests (#6) 2022-12-08 18:49:33 +01:00
OlivierDehaene daa1d81d5e
feat(server): Support Galactica (#4) 2022-12-01 19:31:54 +01:00
OlivierDehaene fa43fb71be fix(server): Fix Transformers fork version 2022-11-08 17:42:38 +01:00
OlivierDehaene 4236e41b0d feat(server): Improved doc 2022-11-07 12:53:56 +01:00
OlivierDehaene 755fc0e403 fix(models): Revert buggy support for AutoModel 2022-11-03 16:07:54 +01:00
OlivierDehaene 3cf6368c77 feat(server): Support all AutoModelForCausalLM on a best effort basis 2022-10-28 19:24:00 +02:00
Nicolas Patry c8ce9b2515
feat(server): Use safetensors
Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
2022-10-22 20:00:15 +02:00
Olivier Dehaene f16f2f5ae1 v0.1.0 2022-10-20 19:14:44 +02:00
Olivier Dehaene 295831a481 Init 2022-10-08 12:30:12 +02:00