hf_text-generation-inference/server/text_generation_server/models/flash_santacoder.py

82 lines
2.6 KiB
Python
Raw Normal View History

2023-04-03 11:06:42 -06:00
import torch
import torch.distributed
from opentelemetry import trace
from transformers import AutoTokenizer, AutoConfig
2023-04-03 11:06:42 -06:00
from typing import Optional, List
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
FlashSantacoderForCausalLM,
2023-04-03 11:06:42 -06:00
)
from text_generation_server.utils import (
initialize_torch_distributed,
2023-04-03 11:06:42 -06:00
weight_files,
Weights,
2023-04-03 11:06:42 -06:00
)
tracer = trace.get_tracer(__name__)
class FlashSantacoderSharded(FlashCausalLM):
def __init__(
2023-05-15 15:36:30 -06:00
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
trust_remote_code: bool = False,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16
else:
raise NotImplementedError("FlashSantacoderSharded is only available on GPU")
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
config = AutoConfig.from_pretrained(
model_id,
revision=revision,
trust_remote_code=True,
)
config.quantize = quantize
config.transpose = config.architectures[0].startswith("GPT2")
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(
filenames,
device=device,
dtype=dtype,
process_group=self.process_group,
aliases={"transformer.wte.weight": ["lm_head.weight"]},
)
model = FlashSantacoderForCausalLM(config, weights)
torch.distributed.barrier(group=self.process_group)
super(FlashSantacoderSharded, self).__init__(
model=model.to(device),
tokenizer=tokenizer,
num_layers=len(model.transformer.h),
num_kv_heads=1,
head_size=model.transformer.head_size,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)
def decode(self, generated_ids: List[int]) -> str:
# Do not skip special tokens as they are used for custom parsing rules of the generated text
return self.tokenizer.decode(
generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
)