hf_text-generation-inference/server/text_generation_server/utils/weights.py

438 lines
15 KiB
Python
Raw Normal View History

import torch
from abc import ABC, abstractmethod
from contextlib import contextmanager
from pathlib import Path
from typing import Dict, List, Optional, Union, Type
from safetensors import safe_open
from dataclasses import dataclass
from text_generation_server.utils.import_utils import SYSTEM
class WeightsLoader(ABC):
"""
Instances of this type implement higher-level weight loading.
At a low-level, every weight is stored in the Safetensors format.
The interpretation of weights may be different however, for instance
could be packed, quantized weights. Loaders are responsible for
interpreting the raw tensors, sharding tensors in a manner compatible
with the format, etc.
"""
@abstractmethod
def get_weights(self, weights: "Weights", prefix: str):
"""
Get weights at the given prefix and apply without tensor paralllism.
"""
...
@abstractmethod
def get_weights_col_packed(
self,
weights: "Weights",
prefix: str,
block_sizes: Union[int, List[int]],
):
"""
Get the packed weights at the given prefix with column-splitting for
tensor parallelism. This method should be used when multiple different
weights are packed into a tensor, for instance, query/key/value
weights or a gate/up projection.
The `block_sizes` determines the proportions of the packed tensors.
The columns are split in equally sized blocks when `block_sizes` is an
`int`, or in blocks proportional given to the sizes. For instance
`[2, 1, 1]` will divide an input with dimensionality `1024` in
`[512, 256, 256]`.
"""
...
def get_weights_col(self, weights: "Weights", prefix: str):
"""
Get weights at the given prefix and apply column-splitting for tensor
paralllism.
"""
return weights.get_multi_weights_col([prefix], 0)
@abstractmethod
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
"""
Get the weights at the given prefixes, column-split them for tensor
parallelim, and then concatenate the weights along the given dimension.
"""
...
@abstractmethod
def get_weights_row(self, weights: "Weights", prefix: str):
"""
Get the weights at the given prefix and apply row-splitting for tensor
parallism.
"""
...
class Weight(ABC):
"""Instances of this type implement unquantized/quantized/to-be
quantized weights."""
@abstractmethod
def get_linear(self, bias: torch.Tensor):
"""Create a linear layer from this weight."""
...
@dataclass
class UnquantizedWeight(Weight):
weight: torch.Tensor
def get_linear(self, bias: torch.Tensor):
from text_generation_server.layers.linear import FastLinear, FastLinearROCm
if SYSTEM == "rocm":
return FastLinearROCm(self.weight, bias)
else:
return FastLinear(self.weight, bias)
class DefaultWeightsLoader(WeightsLoader):
"""Weight loader that loads (unquantized) Torch tensors."""
def __init__(self, weight_class: Type[UnquantizedWeight]):
"""Create a loader. Weights will be wrapped using the given `weights_class`,
normally this will be `UnquantizedWeight`, but a quantizer-specific class
such as `Fp8Weight` can be used to quantize the weights during loading.
"""
self.weight_class = weight_class
"""
Loader that uses tensors as-is with the exception of applying sharding
and/or concatenation.
"""
def get_weights(self, weights: "Weights", prefix: str):
return weights.get_tensor(f"{prefix}.weight")
def get_weights_col_packed(
self,
weights: "Weights",
prefix: str,
block_sizes: Union[int, List[int]],
):
return self.weight_class(
weights.get_packed_sharded(
f"{prefix}.weight", dim=0, block_sizes=block_sizes
),
)
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
w = [weights.get_sharded(f"{p}.weight", dim=0) for p in prefixes]
return self.weight_class(torch.cat(w, dim=dim))
def get_weights_row(self, weights: "Weights", prefix: str):
return self.weight_class(
weights.get_sharded(f"{prefix}.weight", dim=1),
)
class Weights:
def __init__(
self,
filenames: List[Path],
device,
dtype,
process_group,
weights_loader: WeightsLoader,
aliases: Optional[Dict[str, List[str]]] = None,
2023-12-11 06:49:52 -07:00
prefix: Optional[str] = None,
):
routing = {}
for filename in filenames:
with safe_open(filename, framework="pytorch") as f:
for k in f.keys():
if k in routing:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
if aliases is None:
aliases = {}
self.aliases = aliases
self.routing = routing
self.device = device
self.dtype = dtype
self.process_group = process_group
Handling bloom prefix. (#1090) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-10-03 03:55:10 -06:00
self.prefix = prefix
self.weights_loader = weights_loader
self._handles = {}
def _get_handle(self, filename):
if filename not in self._handles:
f = safe_open(filename, framework="pytorch")
self._handles[filename] = f
return self._handles[filename]
def get_filename(self, tensor_name: str) -> (str, str):
Handling bloom prefix. (#1090) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-10-03 03:55:10 -06:00
names = [tensor_name]
if self.prefix is not None:
prefixed = f"{self.prefix}.{tensor_name}"
names.append(prefixed)
for name in names:
filename = self.routing.get(name, None)
if filename is not None:
return str(filename), name
aliases = self.aliases.get(name, [])
for alias in aliases:
filename = self.routing.get(alias, None)
if filename is not None:
return str(filename), alias
Handling bloom prefix. (#1090) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-10-03 03:55:10 -06:00
raise RuntimeError(f"weight {tensor_name} does not exist")
def _get_slice(self, tensor_name: str):
filename, tensor_name = self.get_filename(tensor_name)
f = self._get_handle(filename)
slice_ = f.get_slice(tensor_name)
return slice_
def _has_tensor(self, tensor_name: str):
try:
self.get_filename(tensor_name)
except Exception:
return False
return True
def get_shape(self, tensor_name: str):
return self._get_slice(tensor_name).get_shape()
def get_tensor(self, tensor_name: str, to_device=True, to_dtype=True):
filename, tensor_name = self.get_filename(tensor_name)
f = self._get_handle(filename)
tensor = f.get_tensor(tensor_name)
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
# Special case for gptq which shouldn't convert
# u4 which are disguised as int32. Exl2 uses int16
# as well. FP8 uses torch.float8_e4m3fn
if (
tensor.dtype
not in [
torch.float8_e4m3fn,
torch.int16,
torch.int32,
torch.int64,
]
and to_dtype
):
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
tensor = tensor.to(dtype=self.dtype)
if to_device:
tensor = tensor.to(device=self.device)
return tensor
def get_partial_sharded(
self, tensor_name: str, dim: int, to_device=True, to_dtype=True
):
filename, tensor_name = self.get_filename(tensor_name)
f = self._get_handle(filename)
slice_ = f.get_slice(tensor_name)
world_size = self.process_group.size()
rank = self.process_group.rank()
size = slice_.get_shape()[dim]
Fixing non divisible embeddings. (#1476) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-01-24 05:08:41 -07:00
block_size = (size + world_size - 1) // world_size
start = rank * block_size
stop = (rank + 1) * block_size
if dim == 0:
tensor = slice_[start:stop]
elif dim == 1:
tensor = slice_[:, start:stop]
else:
raise NotImplementedError("Let's make that generic when needed")
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
# Special case for gptq which shouldn't convert
# u4 which are disguised as int32. exl2 uses int16.
# FP8 uses torch.float8_e4m3fn.
if (
tensor.dtype not in (torch.float8_e4m3fn, torch.int16, torch.int32)
and to_dtype
):
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
tensor = tensor.to(dtype=self.dtype)
if to_device:
tensor = tensor.to(device=self.device)
return tensor
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
def get_sharded(self, tensor_name: str, dim: int, to_device=True, to_dtype=True):
filename, tensor_name = self.get_filename(tensor_name)
f = self._get_handle(filename)
slice_ = f.get_slice(tensor_name)
world_size = self.process_group.size()
size = slice_.get_shape()[dim]
assert (
size % world_size == 0
), f"The choosen size {size} is not compatible with sharding on {world_size} shards"
return self.get_partial_sharded(
tensor_name, dim, to_device=to_device, to_dtype=to_dtype
)
def get_packed_sharded(
self,
tensor_name: str,
dim: int,
block_sizes: Union[int, List[int]],
to_dtype=True,
) -> torch.Tensor:
"""
Get a shard from a tensor that packs multiple tensors.
When a tensor packs multiple tensors (such as QKV or an up
projection + gate projection), sharding with `get_sharded` is not
safe since it would not split the packed tensors across shards.
This method shards a tensor, such that the packed tensors are
split across shards.
The columns are split in equally sized blocks when blocks is an `int`, or
in blocks proportional given to the sizes. For instance `[2, 1, 1]` will
divide an input with dimensionality `1024` in `[512, 256, 256]`. This is
convenient for e.g. splitting QKV without knowing the storage details of
quantized weights.
"""
slice_ = self._get_slice(tensor_name)
total_size = slice_.get_shape()[dim]
block_sizes = _blocks_to_block_sizes(total_size=total_size, blocks=block_sizes)
world_size = self.process_group.size()
rank = self.process_group.rank()
tensors = []
block_offset = 0
for block_size in block_sizes:
assert (
block_size % world_size == 0
), f"Prepacked tensor cannot be sharded across {world_size} shards"
shard_block_size = block_size // world_size
start = rank * shard_block_size
stop = (rank + 1) * shard_block_size
if dim == 0:
tensor = slice_[block_offset + start : block_offset + stop]
elif dim == 1:
tensor = slice_[:, block_offset + start : block_offset + stop]
else:
raise NotImplementedError("Currently only dim=0 or dim=1 is supported")
tensors.append(tensor)
block_offset += block_size
tensor = torch.cat(tensors, dim=dim)
tensor = tensor.to(device=self.device)
# Avoid casting quantizer dtypes.
if (
tensor.dtype
not in [
torch.float8_e4m3fn,
torch.int16,
torch.int32,
torch.int64,
]
and to_dtype
):
tensor = tensor.to(dtype=self.dtype)
return tensor
def get_weights(self, prefix: str):
return self.weights_loader.get_weights(self, prefix)
def get_weights_col_packed_qkv(
self,
prefix: str,
num_heads: int,
num_key_value_heads: int,
):
return self.get_weights_col_packed(
prefix, [num_heads, num_key_value_heads, num_key_value_heads]
)
Phi3 support (#1797) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-23 10:40:05 -06:00
def get_weights_col_packed_gate_up(self, prefix: str):
return self.get_weights_col_packed(prefix, 2)
Phi3 support (#1797) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2024-04-23 10:40:05 -06:00
def get_weights_col_packed(self, prefix: str, block_sizes: Union[int, List[int]]):
"""
The columns are split in equally sized blocks when blocks is an `int`, or
in blocks proportional given to the sizes. For instance `[2, 1, 1]` will
divide an input with dimensionality `1024` in `[512, 256, 256]`. This is
convenient for e.g. splitting QKV without knowing the storage details of
quantized weights.
"""
return self.weights_loader.get_weights_col_packed(self, prefix, block_sizes)
def get_weights_col(self, prefix: str):
return self.weights_loader.get_weights_col(self, prefix)
def get_multi_weights_col(self, prefixes: List[str], dim: int):
return self.weights_loader.get_multi_weights_col(self, prefixes, dim)
2023-09-27 04:22:09 -06:00
def get_tensor_shard(self, var, dim):
world_size = self.process_group.size()
rank = self.process_group.rank()
block_size = var.size()[dim] // world_size
start = rank * block_size
stop = (rank + 1) * block_size
if dim == 0:
tensor = var[start:stop]
elif dim == 1:
tensor = var[:, start:stop]
else:
raise NotImplementedError("Let's make that generic when needed")
tensor = tensor.to(dtype=self.dtype)
tensor = tensor.to(device=self.device)
2023-09-27 04:22:09 -06:00
return tensor
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
def get_weights_row(self, prefix: str):
return self.weights_loader.get_weights_row(self, prefix)
@contextmanager
def use_loader(self, weights_loader: WeightsLoader):
"""
This method is a context manager that can be used to use `Weights` with
a different loader for the duration of the context.
"""
old_loader = self.weights_loader
self.weights_loader = weights_loader
try:
yield
finally:
self.weights_loader = old_loader
@property
def loader(self):
return self.weights_loader
def _blocks_to_block_sizes(total_size: int, blocks: Union[int, List[int]]) -> List[int]:
"""
Convert block count or proportions to block sizes.
This function accepts
- The number of blocks (int), in which case the block size is
total_size//blocks; or
- A list of block sizes (List[int]).
In the latter case, if sum(blocks) < total_size, the ratios between
the block sizes will be preserved. For instance, if blocks is
[2, 1, 1] and total_size is 1024, the returned block sizes are
[512, 256, 256].
"""
if isinstance(blocks, list):
total_blocks = sum(blocks)
assert (
total_size % total_blocks == 0
), f"Cannot split {total_size} in proportional blocks: {blocks}"
part_size = total_size // total_blocks
return [part_size * block for block in blocks]
else:
assert total_size % blocks == 0, f"Prepacked is not divisible by {blocks}"
single_size = total_size // blocks
return [single_size] * blocks