diffusers/tests/test_modeling_utils.py

844 lines
28 KiB
Python
Raw Normal View History

2022-05-31 06:27:59 -06:00
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2022-06-07 10:20:14 -06:00
2022-06-17 08:36:51 -06:00
import inspect
import math
2022-05-31 06:27:59 -06:00
import tempfile
import unittest
2022-06-20 05:06:31 -06:00
import numpy as np
2022-05-31 06:27:59 -06:00
import torch
2022-07-19 09:05:40 -06:00
from diffusers import UNetConditionalModel # noqa: F401 TODO(Patrick) - need to write tests with it
2022-06-27 09:39:41 -06:00
from diffusers import (
2022-06-29 04:34:24 -06:00
AutoencoderKL,
2022-06-22 07:40:08 -06:00
DDIMPipeline,
2022-06-15 04:35:47 -06:00
DDIMScheduler,
2022-06-22 07:40:08 -06:00
DDPMPipeline,
2022-06-15 04:35:47 -06:00
DDPMScheduler,
2022-06-22 07:40:08 -06:00
LatentDiffusionPipeline,
2022-06-29 07:25:51 -06:00
LatentDiffusionUncondPipeline,
2022-06-22 07:40:08 -06:00
PNDMPipeline,
2022-06-15 04:35:47 -06:00
PNDMScheduler,
2022-06-25 12:25:43 -06:00
ScoreSdeVePipeline,
ScoreSdeVeScheduler,
UNetUnconditionalModel,
2022-06-29 04:34:24 -06:00
VQModel,
2022-06-15 04:35:47 -06:00
)
2022-06-09 04:36:37 -06:00
from diffusers.configuration_utils import ConfigMixin
2022-06-09 06:06:58 -06:00
from diffusers.pipeline_utils import DiffusionPipeline
2022-06-12 15:20:39 -06:00
from diffusers.testing_utils import floats_tensor, slow, torch_device
from diffusers.training_utils import EMAModel
2022-05-31 06:27:59 -06:00
2022-06-12 11:59:39 -06:00
torch.backends.cuda.matmul.allow_tf32 = False
2022-05-31 06:27:59 -06:00
2022-06-09 04:36:37 -06:00
class ConfigTester(unittest.TestCase):
def test_load_not_from_mixin(self):
with self.assertRaises(ValueError):
ConfigMixin.from_config("dummy_path")
def test_save_load(self):
class SampleObject(ConfigMixin):
config_name = "config.json"
def __init__(
self,
a=2,
b=5,
c=(2, 5),
d="for diffusion",
e=[1, 3],
):
2022-06-17 02:58:43 -06:00
self.register_to_config(a=a, b=b, c=c, d=d, e=e)
2022-06-09 04:36:37 -06:00
obj = SampleObject()
config = obj.config
assert config["a"] == 2
assert config["b"] == 5
assert config["c"] == (2, 5)
assert config["d"] == "for diffusion"
assert config["e"] == [1, 3]
with tempfile.TemporaryDirectory() as tmpdirname:
obj.save_config(tmpdirname)
new_obj = SampleObject.from_config(tmpdirname)
new_config = new_obj.config
2022-06-17 03:55:02 -06:00
# unfreeze configs
config = dict(config)
new_config = dict(new_config)
2022-06-09 04:36:37 -06:00
assert config.pop("c") == (2, 5) # instantiated as tuple
assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json
assert config == new_config
2022-06-17 05:49:26 -06:00
class ModelTesterMixin:
2022-05-31 06:27:59 -06:00
def test_from_pretrained_save_pretrained(self):
2022-06-17 05:49:26 -06:00
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
2022-06-12 13:56:13 -06:00
model.to(torch_device)
2022-06-17 05:49:26 -06:00
model.eval()
2022-05-31 06:27:59 -06:00
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
2022-06-17 11:04:07 -06:00
new_model = self.model_class.from_pretrained(tmpdirname)
2022-06-12 13:56:13 -06:00
new_model.to(torch_device)
2022-05-31 06:27:59 -06:00
2022-06-17 05:49:26 -06:00
with torch.no_grad():
image = model(**inputs_dict)
2022-07-15 04:48:30 -06:00
if isinstance(image, dict):
image = image["sample"]
2022-06-17 05:49:26 -06:00
new_image = new_model(**inputs_dict)
2022-05-31 06:27:59 -06:00
2022-07-15 04:48:30 -06:00
if isinstance(new_image, dict):
new_image = new_image["sample"]
2022-06-17 08:36:51 -06:00
max_diff = (image - new_image).abs().sum().item()
2022-06-27 03:07:57 -06:00
self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
2022-06-20 05:06:31 -06:00
2022-06-17 05:36:59 -06:00
def test_determinism(self):
2022-06-17 08:36:51 -06:00
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**inputs_dict)
2022-07-15 04:48:30 -06:00
if isinstance(first, dict):
first = first["sample"]
2022-06-17 08:36:51 -06:00
second = model(**inputs_dict)
2022-07-15 04:48:30 -06:00
if isinstance(second, dict):
second = second["sample"]
2022-06-17 08:36:51 -06:00
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
2022-06-20 05:06:31 -06:00
2022-06-17 05:36:59 -06:00
def test_output(self):
2022-06-17 08:36:51 -06:00
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
2022-06-20 05:06:31 -06:00
2022-07-15 04:48:30 -06:00
if isinstance(output, dict):
output = output["sample"]
2022-06-17 08:36:51 -06:00
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
2022-06-17 08:36:51 -06:00
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
2022-06-20 05:06:31 -06:00
2022-06-17 05:36:59 -06:00
def test_forward_signature(self):
2022-06-17 08:36:51 -06:00
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["sample", "timestep"]
2022-06-17 08:36:51 -06:00
self.assertListEqual(arg_names[:2], expected_arg_names)
2022-06-20 05:06:31 -06:00
2022-06-17 05:36:59 -06:00
def test_model_from_config(self):
2022-06-17 08:36:51 -06:00
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
# test if the model can be loaded from the config
# and has all the expected shape
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_config(tmpdirname)
new_model = self.model_class.from_config(tmpdirname)
new_model.to(torch_device)
new_model.eval()
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
# check if all paramters shape are the same
for param_name in model.state_dict().keys():
param_1 = model.state_dict()[param_name]
param_2 = new_model.state_dict()[param_name]
self.assertEqual(param_1.shape, param_2.shape)
2022-06-20 05:06:31 -06:00
2022-06-17 08:36:51 -06:00
with torch.no_grad():
output_1 = model(**inputs_dict)
2022-07-15 04:48:30 -06:00
if isinstance(output_1, dict):
output_1 = output_1["sample"]
2022-06-17 08:36:51 -06:00
output_2 = new_model(**inputs_dict)
2022-06-20 05:06:31 -06:00
2022-07-15 04:48:30 -06:00
if isinstance(output_2, dict):
output_2 = output_2["sample"]
2022-06-17 08:36:51 -06:00
self.assertEqual(output_1.shape, output_2.shape)
2022-06-17 05:36:59 -06:00
def test_training(self):
2022-06-17 08:36:51 -06:00
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
2022-06-17 08:36:51 -06:00
model = self.model_class(**init_dict)
model.to(torch_device)
model.train()
output = model(**inputs_dict)
2022-07-15 04:48:30 -06:00
if isinstance(output, dict):
output = output["sample"]
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
2022-06-17 08:36:51 -06:00
loss = torch.nn.functional.mse_loss(output, noise)
loss.backward()
def test_ema_training(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.train()
ema_model = EMAModel(model, device=torch_device)
output = model(**inputs_dict)
2022-07-15 04:48:30 -06:00
if isinstance(output, dict):
output = output["sample"]
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
loss = torch.nn.functional.mse_loss(output, noise)
loss.backward()
ema_model.step(model)
2022-06-17 05:49:26 -06:00
class UnetModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNetUnconditionalModel
2022-06-17 05:49:26 -06:00
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
@property
2022-06-28 03:50:21 -06:00
def input_shape(self):
2022-06-17 11:04:07 -06:00
return (3, 32, 32)
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
@property
2022-06-28 03:50:21 -06:00
def output_shape(self):
2022-06-17 11:04:07 -06:00
return (3, 32, 32)
2022-06-17 05:49:26 -06:00
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_channels": (32, 64),
"down_blocks": ("UNetResDownBlock2D", "UNetResAttnDownBlock2D"),
"up_blocks": ("UNetResAttnUpBlock2D", "UNetResUpBlock2D"),
"num_head_channels": None,
"out_channels": 3,
"in_channels": 3,
2022-06-17 05:49:26 -06:00
"num_res_blocks": 2,
"image_size": 32,
2022-06-17 05:49:26 -06:00
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
2022-06-20 05:06:31 -06:00
2022-06-17 11:04:07 -06:00
2022-07-19 09:05:40 -06:00
# TODO(Patrick) - Re-add this test after having correctly added the final VE checkpoints
# def test_output_pretrained(self):
# model = UNetUnconditionalModel.from_pretrained("fusing/ddpm_dummy_update", subfolder="unet")
# model.eval()
#
# torch.manual_seed(0)
# if torch.cuda.is_available():
# torch.cuda.manual_seed_all(0)
#
# noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
# time_step = torch.tensor([10])
#
# with torch.no_grad():
# output = model(noise, time_step)["sample"]
#
# output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
# expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
# fmt: on
# self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
2022-06-21 04:01:07 -06:00
2022-06-20 06:45:58 -06:00
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNetUnconditionalModel
2022-06-20 06:45:58 -06:00
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
2022-06-20 06:45:58 -06:00
@property
2022-06-28 03:50:21 -06:00
def input_shape(self):
2022-06-20 06:45:58 -06:00
return (4, 32, 32)
@property
2022-06-28 03:50:21 -06:00
def output_shape(self):
2022-06-20 06:45:58 -06:00
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"image_size": 32,
"in_channels": 4,
"out_channels": 4,
"num_res_blocks": 2,
"block_channels": (32, 64),
"num_head_channels": 32,
2022-06-20 06:45:58 -06:00
"conv_resample": True,
"down_blocks": ("UNetResDownBlock2D", "UNetResDownBlock2D"),
"up_blocks": ("UNetResUpBlock2D", "UNetResUpBlock2D"),
2022-06-20 06:45:58 -06:00
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
2022-06-21 02:43:40 -06:00
2022-06-20 06:45:58 -06:00
def test_from_pretrained_hub(self):
model, loading_info = UNetUnconditionalModel.from_pretrained(
2022-07-19 09:05:40 -06:00
"fusing/unet-ldm-dummy-update", output_loading_info=True
)
2022-06-20 06:45:58 -06:00
self.assertIsNotNone(model)
2022-07-19 09:05:40 -06:00
self.assertEqual(len(loading_info["missing_keys"]), 0)
2022-06-20 06:45:58 -06:00
model.to(torch_device)
2022-07-15 04:48:30 -06:00
image = model(**self.dummy_input)["sample"]
2022-06-20 06:45:58 -06:00
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
2022-07-19 09:05:40 -06:00
model = UNetUnconditionalModel.from_pretrained("fusing/unet-ldm-dummy-update")
2022-06-20 06:45:58 -06:00
model.eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
time_step = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
2022-07-15 04:48:30 -06:00
output = model(noise, time_step)["sample"]
2022-06-20 06:45:58 -06:00
output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
2022-06-27 07:25:26 -06:00
2022-07-19 09:05:40 -06:00
# TODO(Patrick) - Re-add this test after having cleaned up LDM
# def test_output_pretrained_spatial_transformer(self):
# model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial")
# model.eval()
#
# torch.manual_seed(0)
# if torch.cuda.is_available():
# torch.cuda.manual_seed_all(0)
#
# noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
# context = torch.ones((1, 16, 64), dtype=torch.float32)
# time_step = torch.tensor([10] * noise.shape[0])
#
# with torch.no_grad():
# output = model(noise, time_step, context=context)
#
# output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
# expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890])
# fmt: on
#
# self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
#
2022-06-27 07:25:26 -06:00
2022-06-17 05:49:26 -06:00
2022-06-27 11:20:15 -06:00
class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNetUnconditionalModel
2022-06-27 11:20:15 -06:00
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
2022-06-27 11:20:15 -06:00
@property
2022-06-28 03:50:21 -06:00
def input_shape(self):
2022-06-27 11:20:15 -06:00
return (3, 32, 32)
@property
2022-06-28 03:50:21 -06:00
def output_shape(self):
2022-06-27 11:20:15 -06:00
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_channels": [32, 64, 64, 64],
"in_channels": 3,
"num_res_blocks": 1,
"out_channels": 3,
"time_embedding_type": "fourier",
"resnet_eps": 1e-6,
"mid_block_scale_factor": math.sqrt(2.0),
"resnet_num_groups": None,
"down_blocks": [
"UNetResSkipDownBlock2D",
"UNetResAttnSkipDownBlock2D",
"UNetResSkipDownBlock2D",
"UNetResSkipDownBlock2D",
],
"up_blocks": [
"UNetResSkipUpBlock2D",
"UNetResSkipUpBlock2D",
"UNetResAttnSkipUpBlock2D",
"UNetResSkipUpBlock2D",
],
2022-06-27 11:20:15 -06:00
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_from_pretrained_hub(self):
model, loading_info = UNetUnconditionalModel.from_pretrained(
2022-07-19 09:05:40 -06:00
"fusing/ncsnpp-ffhq-ve-dummy-update", output_loading_info=True
)
2022-06-27 11:20:15 -06:00
self.assertIsNotNone(model)
2022-07-19 09:05:40 -06:00
self.assertEqual(len(loading_info["missing_keys"]), 0)
2022-06-27 11:20:15 -06:00
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained_ve_mid(self):
2022-07-19 09:05:40 -06:00
model = UNetUnconditionalModel.from_pretrained("google/ncsnpp-celebahq-256")
model.to(torch_device)
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
batch_size = 4
num_channels = 3
sizes = (256, 256)
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step)["sample"]
output_slice = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
2022-06-27 11:20:15 -06:00
def test_output_pretrained_ve_large(self):
2022-07-19 09:05:40 -06:00
model = UNetUnconditionalModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
2022-06-27 11:20:15 -06:00
model.to(torch_device)
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
batch_size = 4
num_channels = 3
sizes = (32, 32)
2022-06-30 09:54:00 -06:00
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
2022-06-27 11:20:15 -06:00
with torch.no_grad():
output = model(noise, time_step)["sample"]
2022-06-27 11:20:15 -06:00
output_slice = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
2022-06-30 09:54:00 -06:00
expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
2022-06-27 11:20:15 -06:00
# fmt: on
2022-06-30 09:54:00 -06:00
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
2022-06-27 11:20:15 -06:00
2022-06-29 04:34:24 -06:00
class VQModelTests(ModelTesterMixin, unittest.TestCase):
model_class = VQModel
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
2022-06-29 04:34:24 -06:00
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"ch": 64,
"out_ch": 3,
"num_res_blocks": 1,
"in_channels": 3,
"attn_resolutions": [],
2022-06-29 04:34:24 -06:00
"resolution": 32,
"z_channels": 3,
"n_embed": 256,
"embed_dim": 3,
"sane_index_shape": False,
"ch_mult": (1,),
"dropout": 0.0,
"double_z": False,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_training(self):
pass
def test_from_pretrained_hub(self):
model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True)
self.assertIsNotNone(model)
2022-07-19 09:05:40 -06:00
self.assertEqual(len(loading_info["missing_keys"]), 0)
2022-06-29 04:34:24 -06:00
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = VQModel.from_pretrained("fusing/vqgan-dummy")
model.eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
with torch.no_grad():
output = model(image)
output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
2022-06-30 08:54:31 -06:00
expected_output_slice = torch.tensor([-1.1321, 0.1056, 0.3505, -0.6461, -0.2014, 0.0419, -0.5763, -0.8462, -0.4218])
2022-06-29 04:34:24 -06:00
# fmt: on
2022-06-30 16:29:18 -06:00
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
2022-06-29 04:34:24 -06:00
class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase):
2022-06-29 05:52:04 -06:00
model_class = AutoencoderKL
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
2022-06-29 05:52:04 -06:00
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"ch": 64,
"ch_mult": (1,),
"embed_dim": 4,
"in_channels": 3,
"attn_resolutions": [],
2022-06-29 05:52:04 -06:00
"num_res_blocks": 1,
"out_ch": 3,
"resolution": 32,
"z_channels": 4,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_training(self):
pass
2022-06-29 07:25:51 -06:00
2022-06-29 05:52:04 -06:00
def test_from_pretrained_hub(self):
model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
self.assertIsNotNone(model)
2022-07-19 09:05:40 -06:00
self.assertEqual(len(loading_info["missing_keys"]), 0)
2022-06-29 05:52:04 -06:00
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
model.eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
with torch.no_grad():
output = model(image, sample_posterior=True)
output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
2022-06-30 08:54:31 -06:00
expected_output_slice = torch.tensor([-0.0814, -0.0229, -0.1320, -0.4123, -0.0366, -0.3473, 0.0438, -0.1662, 0.1750])
2022-06-29 05:52:04 -06:00
# fmt: on
2022-06-30 16:29:18 -06:00
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
2022-06-29 05:52:04 -06:00
class PipelineTesterMixin(unittest.TestCase):
def test_from_pretrained_save_pretrained(self):
# 1. Load models
model = UNetUnconditionalModel(
2022-07-15 04:48:30 -06:00
block_channels=(32, 64),
num_res_blocks=2,
image_size=32,
in_channels=3,
out_channels=3,
down_blocks=("UNetResDownBlock2D", "UNetResAttnDownBlock2D"),
up_blocks=("UNetResAttnUpBlock2D", "UNetResUpBlock2D"),
)
2022-07-17 19:29:40 -06:00
schedular = DDPMScheduler(num_train_timesteps=10)
2022-06-22 07:40:08 -06:00
ddpm = DDPMPipeline(model, schedular)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
2022-06-22 07:40:08 -06:00
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
2022-06-07 10:20:14 -06:00
generator = torch.manual_seed(0)
2022-07-19 10:54:10 -06:00
image = ddpm(generator=generator)["sample"]
2022-06-07 10:20:14 -06:00
generator = generator.manual_seed(0)
2022-07-19 10:54:10 -06:00
new_image = new_ddpm(generator=generator)["sample"]
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
@slow
def test_from_pretrained_hub(self):
2022-07-19 09:05:40 -06:00
model_path = "google/ddpm-cifar10-32"
2022-06-22 07:40:08 -06:00
ddpm = DDPMPipeline.from_pretrained(model_path)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)
ddpm.scheduler.num_timesteps = 10
ddpm_from_hub.scheduler.num_timesteps = 10
2022-06-07 10:20:14 -06:00
generator = torch.manual_seed(0)
2022-07-19 10:54:10 -06:00
image = ddpm(generator=generator)["sample"]
2022-06-07 10:20:14 -06:00
generator = generator.manual_seed(0)
2022-07-19 10:54:10 -06:00
new_image = ddpm_from_hub(generator=generator)["sample"]
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
2022-06-08 03:42:31 -06:00
@slow
def test_ddpm_cifar10(self):
2022-07-19 09:05:40 -06:00
model_id = "google/ddpm-cifar10-32"
2022-06-08 03:42:31 -06:00
unet = UNetUnconditionalModel.from_pretrained(model_id)
scheduler = DDPMScheduler.from_config(model_id)
scheduler = scheduler.set_format("pt")
2022-06-10 05:12:23 -06:00
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
2022-06-28 11:36:56 -06:00
generator = torch.manual_seed(0)
2022-07-19 10:54:10 -06:00
image = ddpm(generator=generator)["sample"]
2022-06-08 03:42:31 -06:00
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 32, 32)
2022-06-28 16:59:21 -06:00
expected_slice = torch.tensor(
[-0.1601, -0.2823, -0.6123, -0.2305, -0.3236, -0.4706, -0.1691, -0.2836, -0.3231]
)
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
@slow
def test_ddim_lsun(self):
2022-07-19 09:05:40 -06:00
model_id = "google/ddpm-ema-bedroom-256"
unet = UNetUnconditionalModel.from_pretrained(model_id)
scheduler = DDIMScheduler.from_config(model_id)
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
generator = torch.manual_seed(0)
image = ddpm(generator=generator)["sample"]
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 256, 256)
expected_slice = torch.tensor(
[-0.9879, -0.9598, -0.9312, -0.9953, -0.9963, -0.9995, -0.9957, -1.0000, -0.9863]
2022-06-28 16:59:21 -06:00
)
2022-06-08 03:42:31 -06:00
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
@slow
def test_ddim_cifar10(self):
2022-07-19 09:05:40 -06:00
model_id = "google/ddpm-cifar10-32"
2022-06-08 03:42:31 -06:00
unet = UNetUnconditionalModel.from_pretrained(model_id)
scheduler = DDIMScheduler(tensor_format="pt")
2022-06-10 05:12:23 -06:00
ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
generator = torch.manual_seed(0)
image = ddim(generator=generator, eta=0.0)["sample"]
2022-06-08 03:42:31 -06:00
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 32, 32)
2022-06-09 06:06:58 -06:00
expected_slice = torch.tensor(
[-0.6553, -0.6765, -0.6799, -0.6749, -0.7006, -0.6974, -0.6991, -0.7116, -0.7094]
2022-06-09 06:06:58 -06:00
)
2022-06-08 03:42:31 -06:00
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
2022-06-10 10:37:45 -06:00
2022-06-13 10:29:22 -06:00
@slow
def test_pndm_cifar10(self):
2022-07-19 09:05:40 -06:00
model_id = "google/ddpm-cifar10-32"
2022-06-13 10:29:22 -06:00
2022-07-18 18:24:10 -06:00
unet = UNetUnconditionalModel.from_pretrained(model_id)
scheduler = PNDMScheduler(tensor_format="pt")
2022-06-13 10:29:22 -06:00
pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
2022-06-28 11:36:56 -06:00
generator = torch.manual_seed(0)
2022-07-19 10:54:10 -06:00
image = pndm(generator=generator)["sample"]
2022-06-13 10:29:22 -06:00
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 32, 32)
expected_slice = torch.tensor(
2022-06-28 11:36:56 -06:00
[-0.6872, -0.7071, -0.7188, -0.7057, -0.7515, -0.7191, -0.7377, -0.7565, -0.7500]
2022-06-13 10:29:22 -06:00
)
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
2022-06-10 10:37:45 -06:00
@slow
def test_ldm_text2img(self):
2022-07-19 09:05:40 -06:00
ldm = LatentDiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
2022-06-10 10:37:45 -06:00
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image = ldm([prompt], generator=generator, num_inference_steps=20)
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 256, 256)
expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
2022-06-12 11:12:01 -06:00
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
2022-06-27 03:42:52 -06:00
@slow
def test_ldm_text2img_fast(self):
2022-07-19 09:05:40 -06:00
ldm = LatentDiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
2022-06-27 03:42:52 -06:00
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
2022-06-27 03:46:50 -06:00
image = ldm([prompt], generator=generator, num_inference_steps=1)
2022-06-27 03:42:52 -06:00
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 256, 256)
2022-06-27 03:44:05 -06:00
expected_slice = torch.tensor([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
2022-06-27 03:42:52 -06:00
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
2022-06-25 12:25:43 -06:00
@slow
def test_score_sde_ve_pipeline(self):
2022-07-19 09:05:40 -06:00
model = UNetUnconditionalModel.from_pretrained("google/ncsnpp-ffhq-1024")
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
2022-07-19 09:05:40 -06:00
scheduler = ScoreSdeVeScheduler.from_config("google/ncsnpp-ffhq-1024")
2022-06-25 12:25:43 -06:00
sde_ve = ScoreSdeVePipeline(model=model, scheduler=scheduler)
torch.manual_seed(0)
2022-06-25 12:25:43 -06:00
image = sde_ve(num_inference_steps=2)
2022-07-15 13:49:05 -06:00
if model.device.type == "cpu":
# patrick's cpu
expected_image_sum = 3384805888.0
expected_image_mean = 1076.00085
# m1 mbp
# expected_image_sum = 3384805376.0
# expected_image_mean = 1076.000610351562
2022-07-15 13:49:05 -06:00
else:
expected_image_sum = 3382849024.0
expected_image_mean = 1075.3788
2022-06-25 12:25:43 -06:00
assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4
2022-06-29 07:25:51 -06:00
@slow
def test_ldm_uncond(self):
2022-07-19 09:05:40 -06:00
ldm = LatentDiffusionUncondPipeline.from_pretrained("CompVis/ldm-celebahq-256")
2022-06-29 07:25:51 -06:00
generator = torch.manual_seed(0)
image = ldm(generator=generator, num_inference_steps=5)["sample"]
2022-06-29 07:25:51 -06:00
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 256, 256)
2022-07-01 09:19:26 -06:00
expected_slice = torch.tensor(
[-0.1202, -0.1005, -0.0635, -0.0520, -0.1282, -0.0838, -0.0981, -0.1318, -0.1106]
)
2022-06-29 07:25:51 -06:00
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2